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Abstract

Due to external influences over parameters that characterize dynamical sys-
tems, an online parameter estimation must be added as part of model predictive
control strategies. In this thesis, we show how continuous parameters estima-
tion, using inverse dynamics, can be used for identifying the inertial parameters
(mass, inertia, and center of mass) of multi-body systems as part of an adap-
tive control strategy. For this, a Featherstone spatial algebra equivalent model,
based on screw theory was used. The system identification was done using a
linear least squares approach using the Recursive Newton-Euler Algorithm as
a way of implementing a generic solution. The process is for open-loop robots
and is tested using an optimal control algorithm based on multiple shooting.
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CHAPTER 1

Introduction

Eu nu strivesc corola de minuni a lumii
şi nu ucid
cu mintea tainele, ce le-ntâlnesc
ı̂n calea mea
ı̂n flori, ı̂n ochi, pe buze ori morminte.

. . .
Lucian Blaga 1

The fascination of humankind with the way things move in nature, in general,
and the animal movement, in particular, has its roots deep into the beginning
of history. Over the years, we have tried to mimic it as much as possible hoping
that, with every improvement, the end result to be closer to what we observe
around us and thus the fine line, between knowing why things work the way they
do and how they work, to become blurred up to the point where no one care
to distinguish between them anymore. This endeavor has culminated nowadays
with the birth of an interdisciplinary area that brings together state-of-the-art
results, in domains, such as numerical optimization, model predictive control,
mathematical modeling of complex dynamical systems (e.g. multi-rigid-body
dynamics), robotics or machine learning.

1https://blog.caramizaru.xyz/doku.php?id=blog:2023:03:17_eu_nu_strivesc_

corola_de_minuni_a_lumii
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1.1 Motivation

It can be easily said, for a long time, the struggle was in finding better models
to express the movement of systems of rigid bodies. This has put us on a
path of new discoveries and nowadays, we have different, equivalent ways, to
describe the dynamics, from classical Newtonian mechanics to more modern
approaches like Lagrange and Hamiltonian formalism, each of them having
its advantages and disadvantages.

Having a good mathematical model of a dynamical system can be helpful
most of the time, since, empirically, one can state that a better model approx-
imation can have a positive impact whenever a control strategy is in place,
nonetheless, the control process methodology can have its own influence on
what is and what is not a good model. In this regard, a good example can be
the degrees of freedom as well as the state space representation of a dynamic
system. Though it might seem that using a Lagrangian/Hamiltonian formalism
will be more suitable for control, since it is using a reduced representation that
can be directly used, when it comes to mechanical systems, this approach also
comes with the disadvantage of redesigning the ODE/DAE whenever, during
the process, discontinuities, in the model, are in place. This approach doesn’t
scale well as it requires human intervention for defining each phase manually.
Also, we can observe that classical Newtonian mechanics comes with challenges
as well, as the redundant form, which characterizes this approach, will fail to
provide a right-hand side representation of the ODE required by most of the
optimal control strategies. This limitation can be overcome by factorizing the
system, using a numerical change of variable (e.g. factorization of the dynami-
cal system using SVD decomposition in the direction of actuated degrees
of freedom), this approach is heavily exposed to numerical instability.

One way to solve this problem is to try to come up with a different model
that inherits the best characteristics of both worlds, reduced and redundant
representation, for the dynamical systems.

Even though the mathematical modeling of dynamical systems, as well as
the control strategy used, represents the backbone of any approach that hopes
to deliver an automatic system, the final result is also strongly influenced by
the quality of the parameters, the model is using. In general, the system iden-
tification applied a priori is not enough since the proprieties of the system are
sensitive to external influences and changes over time. This results, again and
again, in worse control prediction after a while.

The obvious solution to this problem is to extend the model-prediction-
control approach by integrating, a parametric estimation phase as part of
the loop. The result of this approach is the use of an updated model version
during control prediction which is hoped to behave better.

6



1.2 Organization

We are starting with Chapter 2, Related work, where we draw the main lines of
the current research done in the field of automatic differentiation, optimal
control, multi-body dynamics, and system identification while, at the
same time, we put into the context the results of this thesis. We then continue
with Chapter 3, Multi-body Screw Theory, which introduces a Screw Theory
formalism for mechanics and builds the prerequisites for the multi-body dynam-
ics as well. In Chapter 4, System identification we show how the Recursive
Newton-Euler Algorithm can be reinterpreted, in order to compute, in an
algorithmic way, the equivalent analytical equation used for identifying the pa-
rameters that characterize each of the robot’s links. Chapter 5, Experimental
setup, describes the testing environment, the necessary tools used, the overall
flow of the MPC and system identification, the sensor simulation and data
acquisition, as well as the preprocessing steps done a priori that are required
in the building process of the ODE that characterizes any multi-body system.
Chapter 6, Tests puts the proposed solutions into context by comparing them
with the current state-of-the-art. We conclude this thesis, with the last chapter,
Chapter 7, Conclusions and future work.

1.3 Contributions

The main results of this thesis are as follows:

• Introducing a mathematical framework, a Featherstone Algebra equiv-
alent formulation of multi-body dynamics, in a bottom-up manner, based
on Screw Theory geometric perspective. The accent is put on geometric
intuition first, even though, all the concepts are introduced in an algebraic,
rigorous manner, that can be directly applicable afterward.

• Showing how, the introduced framework, can be used to overcome the
necessity of manual define, multi-phase system, for multi-body systems.

• Showing the equivalence of the Recursive Newton-Euler Algorithm
with an analytical equation, in reduced representation, that resembles
the Lagrangian mechanics formalism, and how this approach can be
used to come up with a linear least square, system identification
approach, for the parameters that characterize a multi-body-system; an
approach that, for this specialized ODE, is faster and offers better results
than the more classical and more general multiple shooting, nonlinear
least squares.

• Showing that the parameter identification is path independent and how
only 2 consecutive data acquisitions can be sufficient.

• An implementation for a generic ODE generation of open-loop, multi-
body dynamical systems, starting from URDF format representation; a

7



generic system identification of rigid bodies and a generic model predictive
control, based on multiple shooting. The framework is available in Python
and is built using CasADi framework for sensitivity computation.
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CHAPTER 2

Related work

2.1 Automatic Differentiation

In the world of robotics, in the last 2 decades, we can observe a strong shift
in adopting more complex tools, for modeling and optimization. This is neces-
sary to address the increase in complexity, demanded by the current research
objectives. In this regard, important work has been done in building new algo-
rithmic differentiation tools moving from manual integration of automatic
differentiation [6], to frameworks that offer full symbolical front-end used in
writing differentiable algorithms [1]. Moreover, new differentiable languages,
build with numerical computation in mind, have been proposed [7]. Due to the
high demand for Python in the scientific community, different ways of making
current Python code, differentiable, have been proposed (e.g. JAX). At the
same time, from the Machine Learning community, we get to see new auto-
matic differentiable tools as well, one of the most visible being Pytorch [36].
These tools have the advantages, among others, of having back-ends for CPU
and GPU as well, but they are not specialized for optimal control. A current,
state of the art, of AD, can be found in [32] and [5], also, foundation work in
this field can be found in [20].

For this thesis, CasADi was used which is designed as an optimization
and optimal control mathematical modeling framework. This project
is language agnostic (the project is written in C++ and it offers Python and
Matlab binding) and it can be used to generate C++ code once the problem is
modeled using a height-level language. The design resembles a functional lan-
guage and it offers the means to write vectorizable code in a natural way. At the
same time, it offers access to the state-of-the-art, Sundials suits, sensitivity
computation, and nonlinear optimization tools.

9



2.2 Multi-body dynamics

Throughout the years, related rigid-body simulation work could be found spread
into multiple disciplines. We can observe work done in computer graphics
and animation, particularly in physics-based animation, in molecular
dynamics [39], in the robotics community as well as in the optimization
and control community.

Given the specifics of each area, one can observe different developments of
the current state of the art.

In computer graphics, we see overwhelmingly, solutions based on redundant
systems [12]. This is due to the nature of the end goal, which in this case is
the simulation itself for the entertainment industry (movie and game industry).
In this regard, we can mention the work of Baraff, who has advocated the
physically plausible approach for rigid body simulation [4].

On the opposite side, in the robotics and optimization community, solutions
based on a unified geometric representation of the degrees of freedom are
favored [35]. Among others, this approach simplifies the solver dramatically
as you don’t have to take care of rotation and translation separately as it is
explained in [26]. In this regard, the foundation of Lie groups/Lie algebra
for robotics used was synthesized in [34].

Another equivalent approach, used often in reduced multi-body dynamics
simulation is using Spatial Operator Algebra [38]. This was popularized by
Featherstone in [17] and it is the approach that most of the current frameworks
have adopted.

Another important aspect of the multi-body frameworks in robotics as well
as optimizations and control community is the way they provide access to sen-
sitivity computation. Some, [18] [39], don’t have internal sensitivity compu-
tation capability. Those who have, are either build on top of an automatic
differentiation tool (like the implementation introduced by this thesis [10]),
[24], or they provide an internal analytical derivative [11] [33]. In the past, so-
lutions based on automatic differentiation resembled results equivalent to what
analytical solutions could offer with the disadvantage that re-computation of
sensitivity had to be done in case the model changed. Recent results [40] [41]
have improved the sensitivity time computation up to a constant factor com-
pared with automatic differentiation solutions.

2.3 Optimal Control/MPC

The application of optimal control for multi-body systems has seen practi-
cal results, at least since the late 80s, in computer animation, when Andrew
Witkin and Michael Kass published [46], an approach of generating automatic,
physical-based animation by characterizing the desired motion through trajec-
tory constraints.

Later, direct methods, based onmultiple shooting [8], in optimal control
of multi-body systems were adopted as they are desirable when the model has

10



many degrees of freedom.
For systems that need to recompute the trajectory as often as possible, due

to the change of model with time, the model predictive control needs to be
computed as fast as possible. A real-time iteration scheme [14][15] it’s one
way to minimize the optimal control time computation for each iteration. An
efficient implementation can be found in MUSCOD-II [30] [13].

Extensive work in trajectory optimization through non-smooth domains has
been done in [16], which utilizes a smooth contact model thus no hybrid
method is necessary. Another approach, that treats contact through inelastic
impacts and Coulomb friction was proposed in [37].

Recently, multiple-shooting solutions based on inverse dynamics have been
proposed [25]. These approaches have the potential of being more stable and
faster than the solutions based on forward simulation since the linear time,
forward dynamics tend to have a higher constant than the inverse dynamics
based on the Recursive Newton-Euler Algorithm.

2.4 System identification

When it comes to parametric estimation in a multi-body system, the gen-
eral approach, using forward simulation with multiple shooting, is not the best
approach as this method requires the computation of the mass inverse which
results in a loss of the particular affine structure in lumped parameters,
the inverse dynamics have[43]. Though it might not seems that obvious at first,
system identification in lumped parameters is not sub-optimal as not all the
inertial parameters are necessary most of the time for a full characterization of
the dynamics [43]. A generalization for full inertial parameter estimation was
initially introduced in [3].

This approach doesn’t come without its own limitations, like for example,
the impossibility of computing the parameters for the first link and, sometimes
even for the second one [43].

Another limitation that needs to be taken into consideration is the use of
acceleration, which, most of the time is computed by using a numerical differ-
entiation of the measured velocity. Solutions, that can avoid using torque and
acceleration are based on the total energy of a system since it is also affine
in the lumped parameters. This approach can also be adopted for the method
proposed in this thesis [43].

Important results for parametric estimation can be found also in the adap-
tive control field where it has been shown that is not necessary to find a
solution that converges to the real parameters in order to control a system.
Results that contain guarantees for reaching objectives without converging to
the true parameters can be found in [2].

When one has to take into consideration the sensor measurements er-
rors as well, the result of the linear least squares system identification, though
correct from a mathematical point of view, might not end up being physically
plausible (e.g. inertia must be positive definite, mass must be positive, etc.)

11



A way to deal with this problem is to add supplementary constraints for pa-
rameters as part of the estimation for the result to become feasible [44] [45].
Another approach is to plan for the trajectory that minimizes the error induced
by noise [19].
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CHAPTER 3

Multi-body Screw Theory

3.1 Rigid body kinematics

3.1.1 Rigid body Configuration

Definition 3.1.1 (Free Vector) A geometric quantity with length and direc-
tion.

Remark 3.1.1 Given a reference frame {A}, v⃗ can be moved to a position
such that the base of the arrow is at the origin without changing the orientation.
The vector v⃗ can be represented by its coordinates Av in the reference frame
{A}

Remark 3.1.2 v⃗ denotes the physical quantity while Av denotes the coordi-
nates with respect to {A}

Definition 3.1.2 (Point representation) A point p is represented by a vec-
tor with respect to the origin of a reference frame.

Remark 3.1.3 Ap denotes the coordinates of a point p w.r.t. frame {A}
Fig. 3.1

Definition 3.1.3 (Cross product) Cross product of a ∈ R3, b ∈ R3 is
defined as: Eq. 3.1.

a× b =

a2 · b3 − a3 · b2
a3 · b1 − a1 · b3
a1 · b2 − a2 · b1

 (3.1)

with the following properties:

13



oA

{A} − frame
Ap = A( ⃗oAp)

x̂A

ŷA

ẑA
p

⃗oAp

A( ⃗oBp)

oB

{B} − frame
x̂B

ŷB

ẑB⃗oBp

Bp = B( ⃗oBp)

Figure 3.1: Point vs. Vector in different reference frames

• ||a× b|| = ||a|| · ||b|| · sin(θ)

• a× b = −b× a

• a× a = 0

Definition 3.1.4 (Skew symmetric representation) Cross product can
be interpreted as a linear transformation, a× b = [a] · b where:

[a]
∆
=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (3.2)

with the following properties:

• [a] = −[a]T

• [a] · [b] = [a× b] (Jacobi’s identity)

• a =

a1a2
a3

 ⇐⇒ [a]

Definition 3.1.5 (Reference frame) 3 coordinates, unit length, vectors x̂, ŷ, ẑ
and fixed origin with the following properties:

• x̂, ŷ, ẑ mutually orthogonal vectors

• x̂× ŷ = ẑ right hand rule

Definition 3.1.6 (Rotation matrix) R is a rotation matrix if is a matrix
that specifies the orientation of one frame, e.g.{B}-frame, relative to another
frame, e.g.:{A}-frame: Eq. 3.3.

ARB =
[
Ax̂B

AŷB
AẑB

]
(3.3)

where R satisfies the Spatial Orthogonal Group properties: Eq. 3.4.

SO(3) = {R ∈ R3×3 : RT ·R = I, det(R) = 1} (3.4)

14



Remark 3.1.4 Another interpretation of 3.1.6 is that ARB represents the change
of reference frame from {B}-frame to {A}-frame for a given vector v⃗: Eq. 3.5.

Av = ARB · Bv (3.5)

Definition 3.1.7 (Rigid body transformation) Given two coordinate frames
{A}-frame and {B}-frame, the configuration of B relative to A is determined
by: ARB, the rotation matrix from {B}-frame to {A}-frame and Aob, a point
that represents the origin of {B}-frame expressed in {A}-frame: Fig. 3.2.

oA

{A} − frame
x̂A

ŷA

ẑA
⃗oAoB

oB

{B} − frame
x̂B

ŷB

ẑB

Figure 3.2: Rigid body configuration

Remark 3.1.5 (Rigid transformation of a vector) Given a vector ( free
vector ) r⃗, its coordinates Ar and Br in {A}-frame and {B}-frame are related
by the liner transformation Eq. 3.6.

Ar = ARB · Br (3.6)

Remark 3.1.6 (Rigid body transformation of points) Given a point p, its
coordinates Ap and Bp are related by the affine transformation Eq. 3.7.

Ap = AoB + ARB · Ap (3.7)

Proof:
From Fig. 3.3 we have the coordinate free equlity: Eq. 3.8

⃗oAp = ⃗oAoB + ⃗oBp (3.8)

And by using {A}-frame we get:
A( ⃗oAp) =

Ap
A( ⃗oAoB) =

AOB

A( ⃗oBp) =
ARB · Bp

15



oA

{A} − frame
x̂A

ŷA

ẑA

p

⃗oAoB

oB

{B} − frame
x̂B

ŷB

ẑB

Figure 3.3: Rigid transformation

Definition 3.1.8 (Homogeneous Transformation) For any affine transfor-
mation 3.7 there exist a corresponding linear transformation build using a
homogeneous transformation matrix ATB ∈ R4: Eq. 3.9.

ATB =

[
ARB

AoB
0 1

]
(3.9)

Definition 3.1.9 (Homogeneous coordinates for points) Given a point p ∈
R3, its homogeneous coordinates is given by Eq. 3.10.

p̃ =

[
p
1

]
(3.10)

and it’s corresponding linear transformations is: Ap̃ = ATB · B p̃

Remark 3.1.7 (Homogeneous coordinates for vectors) Given a vector v ∈
R3, its corresponding homogeneous coordinates are given by the Eq 3.11.

ṽ =

[
v
0

]
(3.11)

since ṽ = p̃1 − p̃2 ( where p̃i ∈ R4 is a point ). Hence, ṽ4 = 0.

3.1.2 Rigid body Spatial Velocity (Twist)

Definition 3.1.10 (Linear velocity) Given a rigid body, with angular ve-
locity ω (free vector) and suppose the actual rotation axis passes through a
point p for which the velocity is vp, Fig. 3.4, one can compute the velocity for
any body-fixed point q (a point that is rigidly attached to the body and moves
with the body) as follows: Eq. 3.12.

vq = vp + ω × ⃗(pq) (3.12)
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ω⃗

q
p

Figure 3.4: Linear velocity

Remark 3.1.8 Given that a rigid body is characterized by an infinite number
of points, each of them with different velocities, the Eq. 3.12 introduces a unique
parameterization of the velocity of an arbitrary body-fix point q which depends
only on (ω, vp, p).

Remark 3.1.9 The Eq. 3.12 is coordinate free.

Definition 3.1.11 (Generalization of Definition: 3.1.10) Given Fig. 3.5,
and an arbitrary point r in space, where:

• r might not be on the rotation axis

• r may be a stationary point in space

• vr be the velocity of the body-fixed point that currently coincides
with r

we still have Eq. 3.13.

vq = vr + ω × ⃗(rq) (3.13)

since:

r⃗r = v⃗p + ω⃗ × ⃗(pr)

v⃗q = v⃗p + ω⃗ × ⃗(pq)

= v⃗r − ω⃗ × ⃗(pr) + ω × ⃗(pq)

= v⃗r + ω × (p⃗q − p⃗r)

= v⃗r + ω⃗ × ⃗(rq)

Remark 3.1.10 Using Definition 3.1.11, the body can be regarded as trans-
lating with linear velocity vr while rotating with angular velocity ω about
an axis passing through r.

Definition 3.1.12 (Spatial Velocity ( Twist ) - coordinates free) We de-
fine the Spatial velocity as the free vector Vr = (ω, vr) ∈ R6 where:
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ω⃗

q

p

r (not necessarily a body-fixed point)

Figure 3.5: Linear velocity generalization

• ω is the angular velocity

• vr is the velocity of the body-fixed point that currently coincides with r

• for any other body-fixed point q, its velocity is:

vq = vr + ω × r⃗q

Remark 3.1.11 Twist is a physical quantity, just like linear or angular
velocity and it can be represented in any frame for any chosen reference point
r.

Remark 3.1.12 We can end up with the same conclusion for twists Vr =
(ω, vr) as the one introduced in remark: 3.1.10.

Remark 3.1.13 For coordinates representation of twists reference a frame
must be chosen.

Definition 3.1.13 (Spatial Velocity reference frame representation) Given
a frame {O} and a spatial velocity V ∈ R6, w.l.o.g. one can choose o, the origin
of {O}-frame as the reference point to represent the rigid body velocity Fig. 3.6.
Then, the coordinates for V in {O}-frame is Eq. 3.14.

OVo = (Oω,Ovo) (3.14)

If not specified otherwise, one should assume the origin of the frame used
as the reference point Eq. 3.15.

OV = OVo (3.15)

Definition 3.1.14 (Change Reference Frames for Twists) Given a twist
V, let AV and BV be their coordinates in {A}-frame and {B}-frame Eq. 3.16.

AV =

[
Aω
AvA

]
,BV =

[
Bω
BvB

]
(3.16)

They are connected by Eq:3.17
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x̂
ŷ

ẑ

o

{O} − frame

ω⃗

q

Figure 3.6: Spatial Velocity in reference frame

AV = AXB · BV (3.17)

Where AXB ∈ R6×6 is defined as Eq. 3.18.

AXB = [AdT ]
∆
=

[
ARB 0

[AoB ] · ARB
ARB

]
(3.18)

Where R is the rotation matrix, [AoB ] is the skew-symmetric matrix rep-
resentation of the origin of the {B}-frame expressed in frame {A} and [AdT ]
is the Adjoint operator for the configuration transformation T = (R, p) Eq. 3.9.

Proof:
Aω and Bω are connected through Eq. 3.19 since ω is a free vector.

Aω = ARB · Bω (3.19)

For AvA ( AvoA , the velocity of the body-fixed point that currently coincides
with the origin of {A}-frame, oA) and BvB ( BvoB , Velocity of the body-fixed
point that currently coincides with the origin of {B}-frame, oB) are connected
through Eq. 3.20.

Coordinate free:

vA = vB + ω × ⃗(oBoA)

By using {A}-frame we get:

AvA = AvB + Aω × A ⃗(oBoA),
A ⃗(−oAoB) = −AoB

= ARB · BvoB + (ARB · Bω)× (−AoB)

= ARB · BvoB + (AoB)× (ARB · Bω)
= ARB · BvoB + [AoB ] · (ARB · Bω) (3.20)
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By putting together Eq. 3.19 and Eq. 3.20 one ends up with Eq. 3.18.

Remark 3.1.14 The change of coordinates frame for a twist depends only on
the configuration of {B}-frame relative to {A}-frame.

3.1.3 Screw motion

Definition 3.1.15 (Screw motion) Is the process of rotation and translating
along an axis of a rigid body, Fig. 3.7, and is represented by the screw axis
{q, ŝ, h} and the rotation speed θ̇ where:

• ŝ: unit vector in the direction of the rotation

• q: any point on the rotation axis

• h: screw pitch which defines the ratio of the linear velocity along the
screw axis to the angular velocity about the screw axis

• θ̇: rotation speed

Figure 3.7: Screw motion [31]
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Theorem 3.1.1 (Chasles’ theorem) Every rigid body motion can be realized
by a screw motion.

Definition 3.1.16 (From Screw Motion to Twist) Consider a rigid body
under a screw motion with screw axis {ŝ, h, q} and (rotation) speed θ̇, Fig. 3.8.
By fixing a reference frame {A} with origin oA we find the corresponding twist
AV = (Aω,AvoA) as follows:

The Aω can be directly computed using Eq. 3.21.

Aω = Aŝ · θ̇ (3.21)

For AvoA , by picking q as a reference point, we get the coordinate-free relation
Eq. 3.22. The corresponding result in {A}-frame is Eq. 3.23.

voA = vq + ω × ⃗(qoA)

= (h · θ̇) · ŝ+ ω × ⃗(qoA) (3.22)

AvoA = (h · θ̇) · Aŝ+ Aω × ⃗(−Aq)

= Aŝ · (h · θ̇) + Aq × Aω

= Aŝ · (h · θ̇) + Aq × (Aŝ · θ̇) (3.23)

x̂
ŷ

ẑ

o

{A} − frame

q

ŝ

Figure 3.8: From Screw Motion to Twist

Remark 3.1.15 The result holds as long as all the vectors and the twist are
represented in the same reference frame.

Definition 3.1.17 (From Twist to Screw Motion) Given any twist V =
(ω, v) we compute the corresponding screw motion by finding {q, ŝ, h} and θ
as fallows:
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• if ω = 0, then it is a pure translation (h =∞):

ŝ =
v

||v||
, θ̇, h =∞, q can be arbitrary selected

Then we get: V = S · θ̇ =

[
0
v

||v||

]
· ||v||

• if ω ̸= 0:

ŝ =
ω

||ω||
, θ̇ = ||ω||, q =

ω × v

||ω||2
, h =

ωT · v
||ω||

If v = 0 (no translation) then q = 0 and h = 0 we get: V = S·θ̇ =

[ ω
||ω||
0

]
·||ω||

Otherwise (general case): V = S · θ̇ =

[
ω

||ω||
v

||ω||

]
· ||ω||

Remark 3.1.16 The main goal of the Screw motion is to generalize twists
Eq. 3.14 to a structure that resembles the angular velocity, ω operator. An
angular velocity vector ω can be viewed as ω̂ · θ̇, where ω̂ is the unit rotation axis
and θ̇ is the rate of rotation about that axis. Similarly, a twist (spatial velocity)

V can be interpreted in terms of a screw axis Ŝ = { ˆs, h, q} and a velocity θ̇
about the screw axis. With a slight abuse of notation, we will often write its
twist as Eq. 3.24. In this notation, we think of Ŝ as the twist associated with a
unit speed motion along the screw axis {ŝ, h, q}.

V = Ŝ · θ̇ (3.24)

3.1.4 Operator View of Rigid-Body Transformation

Definition 3.1.18 (Rotation Operation via Differential Equation) Given
a point initially located at p0 at time t = 0, rotating the point with unit angular
velocity ω̂, for which the rotation axis is passing through the origin, one will end
up with a motion described by Eq. 3.25 as a solution of a linear ODE. After
t = θ, the point has been rotated by θ degree p(t = θ) = e[ω̂]·θ · p0 Fig. 3.9.

ṗ(t) = ω̂ × p(t) = [ω̂] · p(t), with: p(0) = p0

p(t) = e[ω]·t · p0 (3.25)
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o

{O} − frame
x̂

ŷ

ẑ

ω̂

p(t)

p(t = 0)

Figure 3.9: Rotation Operation via Differential Equation

Remark 3.1.17 One can view Eq. 3.26 as a rotation operator that rotates
a point about ω̂ through θ degree.

Rot(ω̂, θ)
∆
= e[ω̂]·θ (3.26)

Theorem 3.1.2 (Rotation matrix, Rotation Operator equivalence) Every
rotation matrix R can be written as R = Rot(ω̂, θ) (represents a rotation oper-
ator about ω by θ). Any matrix of the form e[ω̂]·θ is part of SO(3).

Proof:

Based on checking the Spatial Orthogonal Group, 3.4, properties:

(
e[ω̂]·θ

)T
=

(
I + [ω̂] · θ + [ω̂]2 · θ2

2!
+ ...

)T

=

∞∑
j=0

(
([ω̂]T · θ)j

j!

)
= e−[ω̂]·θ (3.27)

eA · e−A = I (3.28)

From Eq. 3.27 and Eq. 3.28 we end up with the following result Eq. 3.29
(the transpose is the inverse).(

e[ω̂]·θ
)T
· e[ω̂]·θ = I (3.29)

Also, since e[ω̂]·0 = I =⇒ det(I) = 1 and because of the continuity of the
function in terms of θ, the Eq. 3.30 is true for any ω.
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det
(
e[ω̂]·θ

)
= 1 (3.30)

Definition 3.1.19 (so(3) set) We define the set of so(3) matrices as 3.31

so(3)
∆
= {S ∈ R3×3 : ST = −S} (3.31)

Remark 3.1.18 (The dual interpretation of rotation) Given a rotation ma-
trix, R, and the equality q = R · p one can interpret the result as:

• changing reference frame, where one has 2 frames, {A}, {B}, and one
fizical point a. R represents the orientation of B relative to A while p = Ba
and q = Aa. Hence, q = A · p ⇐⇒ Aa = ARB · Ba.

• applying the rotation operator, where one has 1 frame and 2 points: a
Rot()→

a′, p = Aa, q = Aa′.

Remark 3.1.19 (Rotation Operator applied to Reference Frame) One
can extend Remark 3.1.18 to frames as well.

• Change of reference frame interpretation: Given a ”frame object” RA the
representation of this ”object frame” between 2 frames {B} and {O} is
given by the equation: ORA = ORB · BRA.

• Operator interpretation: Given 2 ”frames objects” defined using the same
reference frame one can relate them as follows: OR′

A = R · ORA where R
is the operator: Rot(ω̂, θ).

Definition 3.1.20 (Rotation matrix properties) Given a matrix R ∈ SO(3),
R has the following properties:

1. RT ·R = I

2. R1 ·R2 ∈ SO(3) if R1, R2 ∈ SO(3)

3. ||R · p−R · q|| = ||p− q||

4. R · (v × w) = (R · v)× (R · w)

5. R · [w] ·RT = [R · w]

Proof:

1. Proven directly by using SO(3) group definition.

2. Directly proven by using the fact that SO(3) group is closed under multi-
plication.

3. Rotation operation preserves the distance.

||R · p−R · q|| = ||R · (p− q)||2 = (p− q)T ·RT ·R · (p− q)
by prop. 1

= ||p− q||
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4. Rotation operation preserves the orientation between 2 vectors after rota-
tion.

(R · v)× (R · w) = [R · v] · (R · w)
by prop. 5

= R · [v] ·RT · (R · w)
= R · [v] · w
= R · (v × w)

5. For ∀u ∈ Rn we have:

[R · w] · u = (R · w)× u

= (R · w)× (R×RT × u)

= R · (w ×RT · u)
= R · [w] ·RT · u

Remark 3.1.20 Given {A}-frame and {B}-frame, the numerical values of the
operator Rot(ω̂, θ) depend on both, the reference frame to represent ω̂ as well as
the reference frame to represent the operator itself.

Definition 3.1.21 (Rotation operator in Different Frames) Consider a ro-
tation axis ω̂, with {A}-frame coordinates, Aω̂ and {B}-frame coordinates, Bω̂
connected by the Eq. 3.32. Also, let BRot(Bω̂, θ) and ARot(Aω̂, θ) be the two
rotation matrices representing the same rotation operator Rot(ω̂) in {A}-frame
and respectively {B}-frame.

Aω̂ = ARB · Bω̂ (3.32)

Then we have the relation Eq. 3.33.

ARot(Aω̂, θ) = ARB · BRot(Bω̂, θ) · BRA (3.33)

Proof Approach 1:

We consider 2 points p
Rot(ω̂,θ)→ p′ (operator view, one reference frame, 2 points)

then, by using {A}-frame we have:

Ap′ = ARot(Aω̂, θ) · Ap (using {A} − frame)
Bp′ = BRot(Bω̂, θ) · Bp (using {B} − frame)

ARB · Bp′ = ARB · BRot(Bω̂, θ) · Bp
Ap′ = ARB · BRot(Bω̂, θ) · BRA · Ap

=⇒ ARot(Aω̂, θ) = ARB · BRot(Bω̂, θ) · BRA
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Proof Approach 2:

By using the property 5 ( 3.1.20) we have:

Rot(Aω̂, θ) = e[
Aω̂]·θ

= e[
ARB ·Bω̂]·θ

= e
ARB ·[Bω̂]·ART

B ·θ (3.34)

eP ·A·P−1

= P · eA · P−1 (3.35)

(ARB)
T = (ARB)

−1 (3.36)

From: (3.34, 3.36, 3.35) :

=⇒ Rot(Aω̂, θ) = ARB · e[
Bω̂]·θ · BRA

Remark 3.1.21 (Rigid-body Operation via Differential Equation) By ex-
tending the Rotation Operator via Differential Equation to rigid body
transformations one can obtain a similar ODE characterization for T ∈ SE(3)
which leads to exponential coordinates.

Definition 3.1.22 (Rigid-body Operation via Differential Equation) Consider
a point p that undergoes a screw motion with screw axis S and unit speed
(θ̇ = 1). Let the corresponding twist be V = S = (ω, v) Fig. 3.10. The motion
can be described by the following ODE:

˙p(t) = ω × p(t) + v ∈ R3 =⇒
[

˙p(t)
0

]
=

[
[ω] v
0 0

]
·
[
p(t)
1

]
∈ R4 (3.37)

Where we define: ˜p(t) =

[
p(t)
1

]
∈ R3 (3.38)

And it has the following solution in homogeneous coordinates Eq. 3.39

[
p(t)
1

]
= e

[ω] v
0 0

·t


·
[
p(0)
1

]
(3.39)

Definition 3.1.23 (Matrix representation of a twist) Given a twist V =
(ω, v), let [V] ∈ R4 be its matrix representation Eq. 3.40

[V] =
[
[ω] v
0 0

]
∈ R4×4 (3.40)

Remark 3.1.22 The Def. 3.1.23 also applies to screw axis S and in this case,
the solution of Eq. 3.39 becomes Eq. 3.41 where, [S] is of the form Eq. 3.40

˜p(t) = e[S]·t · ˜p(0) (3.41)
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x̂
ŷ

ẑ

o

{O} − frame

ŝ

pt

pt+1

Figure 3.10: Rigid-body Operation via Differential Equation

Remark 3.1.23 e[S]·t ∈ SE(3) is always a valid homogeneous transformation
matrix.

Remark 3.1.24 Any T ∈ SE(3) can be written as T = e[S]·t, i.e., it can be
viewed as an operator that moves a point/frame along the screw axis at unit
speed for time t.

Definition 3.1.24 (se(3) set) Similarly with so(3) 3.1.19, we define se(3) set
as Eq. 3.42 where the matrix representation of se(3) is Eq. 3.40.

se(3) = {([w], v) : [w] ∈ so(3), v ∈ R3} (3.42)

Remark 3.1.25 (Homogeneous Transformation as Rigid-body Operator)
The operator viewed of a rotation matrix, remark 3.1.18, can be extended to ho-
mogeneous transformations as well, by using the screw axes interpretation of
twists. W.l.o.g., by considering the ”unit velocity” V = S, the time t from
Eq. 3.41 has a similar meaning, with the degrees, as it was for the rotation ma-
trix.

For any homogeneous transformation, T , one can find a screw axis, S s.t.
T = e[S]·θ. This way, one can interpret the transformation T of p̃′ = T · p̃ as the
”rotation” of p about the screw axis S by θ degrees. The same argument can be
made for frames as well.

Definition 3.1.25 (Rigid-Body Operator in Different Frames) Generalization
of Definition 3.1.21 For a rigid-body operator T represented in another frame
(e.g. {O}) than the object (e.g. {B}), one will have to transform the object to
the same frame with the operator, apply the operator and then transform back
in the initial frame Eq. 3.43.

OT ⇐⇒ T−1
B · OT · OTB (3.43)
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Definition 3.1.26 (Rigid Operation applied on Screw Axis) Considering
an arbitrary screw axis S and suppose the axis has gone through a rigid trans-
formation T = (R, p) and the resulting new screw axis is S ′, then we have the
following relation Eq. 3.44.

S ′ = [AdT ] · S (3.44)

Proof:

One can consider an arbitrarily frame {A}, rigidly attached to the screw axes,
and the {B}-frame, obtained after applying the operator T .

The coordinates of S in {A} are the same as the coordinates of S ′ in {B}
(i.e. AS = BS ′).

Also, we know that for Eq. 3.45, T = ATB when {A}-frame is used.

TB = T · TA (3.45)

By multiplying AXB (applying the change of coordinates of twist) to Eq. 3.44
we get:

AXB · AS = AXB · BS ′ = AS ′

=⇒ AS ′ = AXB · AS (3.46)

Remark 3.1.26 AXB, from Eq. 3.46 can be interpreted in 2 equivalent ways:

• the transformation between frame {B} and {A}

• the operator inside its corresponding transformation T

These proprieties are inherited directly from the dual interpretation of ho-
mogeneous transformations to which it corresponds.

3.1.5 Exponential coordinate of Rigid Body Configuration

Definition 3.1.27 (Exponential Coordinate)
For any unit vector [ω̂] ∈ so(3) and any θ ∈ R, we have e[ω̂]·θ ∈ SO(3).
For any R ∈ SO(3), exists ω̂ ∈ R3 with ||ω̂|| = 1 and θ ∈ R s.t. R = e[ω̂]·θ.
The vector ω̂ · θ is called the exponential coordinate for R.
The exponential coordinates are also called the canonical coordinates

of the rotation group SO(3).

Definition 3.1.28 (Exponential Map)

e[ω]·θ = I + θ · [ω] + θ2

2!
· [ω]2 + θ3

3!
· [ω]3 + ... (3.47)
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Definition 3.1.29 (Rodrigues’ Formula) Given any unit vector [ω̂] ∈ so(3),
we have Eq. 3.48

e[ω̂]·θ = I + [ω̂] · sin(θ) + [ω̂]2 · (1− cost(θ)) (3.48)

Proof:

W.l.o.g. we consider Eq. 3.49. In case this is not true, we normalize it and
rescale θ with its norm.

||ω̂|| = 1 (3.49)

Also, the following equalities are true:

[ω̂]2 = −[ω̂]T

[ω̂]3 = −[ω̂] (using Eq. 3.49)

[ω̂]4 = [ω̂]3 · [ω̂] = −[ω̂]2

Then we get:

e[ω̂]·θ = I + θ · [ω̂] + θ2

2!
· [ω̂]2 + θ3

3!
· [ω̂]3 + θ4

4!
· [ω̂]4 + ...

= I + (θ +
θ3

3!
+

θ5

5!
+ ...)︸ ︷︷ ︸

sin(θ)

·[ω̂] + (
θ2

2
− θ4

4!
+

θ6

6!
+ ...)︸ ︷︷ ︸

1−cos(θ)

·[ω̂]2

Definition 3.1.30 Given R ∈ SO(3) the the corresponding θ and ω are com-
puted as follows Eq. 3.1.30

• If R = I, the θ = 0 and ω̂ is undefined

• If Tr(R)=−1, then θ = π and set ω̂ equal to one of the following:

1√
2 · (1 + r33)

·

 r13
r23

1 + r33

 ,
1√

2 · (1 + r22)
·

 r12
1 + r22
r32

 ,
1√

2 · (1 + r11)
·

1 + r11
r21
r31


• Otherwise, θ = cos−1( 12 · Tr (R)−1) ∈ [0, π) and [ω̂] = 1

2·sin(θ ) · (R−RT )

Definition 3.1.31 (Exponential Map of se(3)) For any twist V = (ω, v)
and θ ∈ R, we have e[V]·θ ∈ SE(3) computed as follows:

• (ω = 0) : e[V]·θ =

[
I v · θ
0 1

]
• (ω ̸= 0) without loss of generality one can assume ||ω|| = 1 then:

e[V] =

[
e[ω]·θ G(θ) · v
0 1

]
, G(θ) = I ·θ+(1−cos(θ)) · [ω]+(θ−sin(θ)) · [ω]2
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Definition 3.1.32 (Log of SE(2)) Given any transformation T = (R, p) ∈
SE(3), one can always find the twist S = (ω, v) and a scalar θ s.t. Eq.3.50

e[S]·θ = T =

[
R p
0 1

]
(3.50)

which is computed as follows:

• if R = I then ω = 0, v = p
||p|| , and θ = ||p||

• Otherwise, use matrix logarithm on SO(3) to determine ω and θ from R.
Then v is computed as v = G−1(θ) · p, where Eq. 3.51

G−1(θ) =
1

θ
· I − 1

2
· [ω] + (

1

θ
− 1

2
· cos(θ

2
)) · [ω]2 (3.51)

3.1.6 Instantaneous Velocity of Moving Frame

Definition 3.1.33 (Instantaneous Velocity of Rotating Frame) Given an
{A}-frame with the orientation RA(t) and the velocity ωA(t), both expressed in
{O}-frame Fig. 3.11. The rate of change of RA w.r.t. time is Eq. 3.52.

d

dt
RA(t) = [ωA] ·RA(t) =⇒ [ωA(t)] = ṘA(t) ·R−1

A (t) (3.52)

oA

x̂A

ŷA

ẑA ⃗ωA(t)

oB

x̂B

ŷB

ẑB

Figure 3.11: Instantaneous Velocity of Rotating Frame
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Proof:

ORA(t) =
[
Ox̂A(t)

OŷA(t)
O ẑA(t)

]
=⇒ OṘA(t) =

[
O ˙̂xA(t)

O ˙̂yA(t)
O ˙̂zA(t)

]
Since we know that:

˙̂xA = ωA × x̂A = [ωA] · x̂A

˙̂yA = ωA × ŷA = [ωA] · ŷA
˙̂zA = ωA × ẑA = [ωA] · ẑA

=⇒ ṘA = [ωA] ·RA =⇒ [ωA] = ṘA ·R−1
A (3.53)

More precisely: [OωA] =
OṘA · OR−1

A (3.54)

And since: AωA = ARO · OωA

[AωA] = [ARO · OωA]
3.1.20
= ARO · [OωA] · ART

O

= ARO · (OṘA · OR−1
A ) · ORA

= ARO · OṘA = OR−1
A ·

OṘA

=⇒ [AωA] =
OR−1

A ·
OṘA (3.55)

Clarification:

• AωA Is the velocity of {A}-frame w.r.t. {A}-frame.

• ORA Is the orientation of frame A : RA, expressed in {O}-frame.

Definition 3.1.34 (Instantaneous Velocity of Moving Frames) Given a
moving frame {A} with configuration TA(t) and velocity V = (ω, v), both ex-
pressed in {O}-frame Fig. 3.12 then, the rate of change of TA w.r.t. time is
Eq. 3.56.

d

dt
TA(t) = [VA(t)] · TA(t) =⇒ [VA(t)] = ṪA(t) · T−1

A (t) (3.56)

Proof:
By using the direction vectors of the {A}-frame x̂, ŷ, ẑ as well as the origin point
OA ,all in homogeneous form, we build TA =

[
x̃A ỹA z̃A ÕA

]
Fig. 3.13.
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{O}-frame

x̂O

ŷO

ẑO

T (t = 0)

x̂A

ŷA

ẑA

T (t = t2)

x̂A

ŷA

ẑA

T (t = t1)
x̂A

ŷA

ẑA

Figure 3.12: Instantaneous Velocity of Moving Frame

x̂A = ⃗OAPx = Px −OA

=⇒ ẋA = Ṗx − ȮA = (vo + ω × O⃗Px)− (v⃗o + ω × ⃗OOA)

= ω × (O⃗Px − ⃗OOA) = ω × x̂A (3.57)

And since: ˙̂xA =

[
˙̂xA

0

]
3.57
=⇒ ˙̃xA =

[
[ω] vo
0 0

]
·
[
x̂A

0

]
(3.58)

Analogous, we get: ˙̃yA =

[
[ω] vo
0 0

]
·
[
ŷA
0

]
and ˙̃zA =

[
[ω] vo
0 0

]
·
[
ẑA
0

]
(3.59)

Also: ˙̃OA =

[
ȮA

0

]
=

[
vo + ω ×OA

0

]
=

[
[ω] vo
0 0

]
·
[
OA

1

]
(3.60)

3.58 3.59 3.60
=⇒ ṪA = [VA] · TA =⇒ [VA] = ṪA · T−1

A (3.61)

=⇒ [AVA] = OT−1
A · OṪA (3.62)

The proof of Eq. 3.62 is similar to the one from Rotation Frames, Eq. 3.55.

Clarification:

• AVA represents the velocity of frame {A} relative to frame {O} expressed
in frame {A}.

3.1.7 Kinematics of Open Chain, Product of Exponential

Definition 3.1.35 (Forward Kinematics) Is the process of calculation of the
configuration T = (R, p) of the end-effector frame from joint variables: θ =
(θ1, ..., θn) Fig. 3.14.

Definition 3.1.36 Suppose we have a robot with n joints and n links. Each
joint has one degree of freedom represented by joint variable θi for i = 1, ...n
where:
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o

{O} − frame

x̂O

ŷO

ẑO

OA

{A} − frame

x̂A

ŷA

ẑA

Px

Figure 3.13: Moving Frame

Figure 3.14: Forward Kinematics [31]

• θi: joint angle (revolute joint) or joint displacement (prismatic joint)

• {s}-frame: fixed frame (also referred as frame {0})

• {i}-frame: is attached to link i, for i = 1, ...n

• {b}-frame: frame attached at the end-effector (also referred {n + 1}-
frame)

• iSi: screw axis of joint i expressed in {i}-frame (also referred as S ex-
pressed in local frame)

• 0Si: screw axis of joint i expressed in fixed frame {0} (global frame /
{s})

• θ1 = 0, ..., θn = 0: Home position is the configuration where all the joint
angles are zero. Other fixed angles can be chosen as the home position.

• 0S̄i = 0Si(0, ..., 0): the screw axis of joint i expressed in frame {0}, when
the robot is at the home position.
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The computation of bTs(θ1, ..., θn) Fig. 3.15 is done as following:

Step 1: Configuration of end-effector when the robot is at home posi-
tion

M
∆
= bTs(0, ..., 0)

Step 2: Apply all screw motions:

bTs(θ1, ..., θn) = e[
0S̄1]·θ1 · e[

0S̄2]·θ2 · ...e[
0S̄n]·θn ·M (3.63)

Figure 3.15: Product of exponentials [31]

Remark 3.1.27 iSi does not change when the robot moves (i.e. when θ changes),
but 0Si depends on θ1, ..., θi.

Remark 3.1.28 (Product of exponentials is order independent) The prod-
uct of exponentials was obtained in Eq. 3.63 by applying the screw motions along
screw axes in this order: 0S̄n, 0S̄n−1, ...,

0S̄1. The same result can be obtained
in any different order as well.

Proof:

For simplicity, we assume that n = 2 Fig. 3.16 . By applying the screw
motion, Eq. 3.64, along 0S̄1 first we get Eq. 3.65:
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0S̄1

i = 1

0S̄2

i = 2

(a) Rest position

θ1

0S̄1

0S̄2

(b) Motion along axes 1

θ2

θ1

0S̄1

0S̄2

(c) Motion along axes 2

Figure 3.16: Product of exponentials, n = 2

T = e[
0S̄1]·θ1 (3.64)

sTb(θ, 0) = e[
0S̄1]·θ1 ·M (3.65)

The screw axes for joint 2 has been changed. The new axes is

0S̄2
T=e[

0S̄1]·θ1
−→ 0S2 = [AdT ] · 0S̄2 (3.66)

0S2 = 0S2(θ, 0) ̸= 0S̄2 (3.67)

=⇒ sTb(θ1, θ2) = e[
0S2 ̸=0S̄2]·θ2 · sTb(θ1, 0) (3.68)

From property 5 in 3.1.20 we can also show that: (3.69)

S ′ = [AdT ] · S ⇐⇒ [S ′] = T · [S] · T−1 (3.70)

3.70
=⇒ e[

0S2]·θ2 = e[[AdT ]·0S̄2]·θ2 = eT ·[0S̄2]·T−1·θ2

= T · e
0S̄2 · T−1 (3.71)

=⇒ sTb(θ1, θ2) = (T · e[
0S̄2]·θ2 · T−1) · (e[

0S̄1]·θ1) ·M

= e[
0S̄2] · e[

0S̄1]·θ1 ·M (3.72)
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3.1.8 Velocity Kinematics

Definition 3.1.37 (Velocity Kinematics) Is the process of end-effector frame
{b} velocity computation relative to the joint velocities θ̇1, ...θ̇n and it depends
on how, the velocity of {b}-frame is represented:

• Twist representation =⇒ Geometric Jacobian

• Local representation of SE(3) =⇒ Analytic Jacobian

Definition 3.1.38 (Geometric Jacobian) Given the end-effector twist V =
(ω, v), the connection with joint velocities θ̇1, ...θ̇n is given by J(θ): Eq. 3.73.

V = J(θ) · θ̇ = J1(θ) · θ̇1 + ...+ Jn(θ) · θ̇n (3.73)

where the ith column Ji(θ) is the end-effector velocity when the robot is
rotating about Si at unit speed θ̇i = 1 while all the other joints do not move (i.e.
θ̇j = 0 for j ̸= i).

Remark 3.1.29 The column vectors Ji of the Geometric Jacobian repre-
sents the joint ith screw axis Eq. 3.74 and it depends on θ as well as the
reference frames.

Ji(θ) = Si(θ) (3.74)

Remark 3.1.30 Each column of the Geometric Jacobian can be represented
as:

• iJi = iSi, i = 1, ...n local coordinate, which makes the corresponding
screw axes independent of θ with the disadvantage of having a Jacobian
column matrix in different coordinate frames.

• 0Ji(θ) =
0Xi(θ) · iSi, i = 1, ..n in a selected, fixed frame {0}

and can be computed, in a systematic way using the following algorithm:
Alg. 1.

Algorithm 1 Geometric Jacobian Algorithm

Require: 0S̄1, ..., 0S̄n, θ1, ..., θn
Ensure: 0J(θ)
1: 0S1(θ) = 0S̄1 // = 0S1(0) (independent of θ)
2: for i=2,n do
3: T̂ (θ1, ..., θi−1) = e[

0S̄1]·θ1 · ... · e[0S̄i−1]·θi−1

4: 0Ji(θ) = [AdT̂ (θ1,...,θi−1)
] · 0S̄i // = 0Si

5: end for
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3.1.9 Spatial Acceleration

Definition 3.1.39 (Spatial Acceleration) Given Fig. 3.17, a rigid body with

spatial velocity V = (ω, vo), its spatial acceleration is A = limδ→0
V(t+δt)−V(δt)

δ =[
ω̇
v̇o

]
where:

• vo is the velocity of the body-fixed particle coinciding which the frame origin
o at the current time t

• ω̇ is an angular acceleration of the body

• v̇o is the acceleration of no body-fixed point but in fact, v̇o gives the rate of
change in stream velocity of body-fixed particles passing through
point o

ω̂

;

;

;

;
q(t0)

q1(t0)

{O}

Figure 3.17: Spatial Acceleration

Remark 3.1.31 Why v̇o is the acceleration of no body-fixed point?
Suppose q(t0) is the body fixed particle that coincides with point o at time t0
then vo(t0) = q̇(t0). However, v̇o(t0) ̸= q̈(t0), where q̈(t) is the conventional
acceleration of the body-fixed point q.

v̇o(t0)
∆
= lim

δ→0

vo(t0 + δt)− vo(δt0)

δ
̸= lim

δ→0

q̇(t0 + δ)− q̇(t0)

δ
= q̈(t0)

(3.75)

since :

at time t = t0, q(t0) = 0, vo(t0) = q̇(t0) (3.76)

and at time t = t0 + δ, q1(t0 + δ) = 0, vo(t0 + δ) = q̇1(t0 + δ) ̸= q̇(t0 + δ)
(3.77)

Definition 3.1.40 (Computation of q̈(t)) For all t holds:

q̇(t) = vo(t) + ω(t)× q(t) (3.78)

then :

q̈(t) = v̇o(t) + ω̇(t)× q(t) + ω(t)× q̇(t) (3.79)
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Remark 3.1.32 If q(t) is the body fixed particle that coincides with o at time
t (q(t) = 0⃗), then we have Eq. 3.80.

q̈(t) = v̇o(t) + ω(t)× q̇(t) (3.80)

3.1.10 Plücker Coordinate System and Basis Vector

Definition 3.1.41 (Derivatives) Let r ∈ R3 be a free vector with the coor-
dinates defined in {O}-frame respectively {B}-frame (both with the same fixed
origin):

Or =

Orx
Ory
Orz

 ∈ R3 ⇐⇒ r =
[
x̂O ŷO ẑO

]
· Or (3.81)

Br =

Brx
Bry
Brz

 ∈ R3 ⇐⇒ r =
[
x̂B ŷB ẑB

]
· Br (3.82)

Expressing Eq. 3.82 in {O}-frame
=⇒ Or =

[
Ox̂B

OŷB
O ẑB

]
· Br (3.83)

where {O}-frame is an inertial frame Fig. 3.18 and where the derivatives
are defined implicitly w.r.t. the inertial {O}-frame.

{O}
x̂O

ŷO

ẑO ω⃗B(t)

r(t)

{B}

x̂B

ŷB

ẑB

Figure 3.18: Velocity in different frames
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From Eq. 3.81
=⇒ ṙ =

[
x̂O ŷO ẑO

]
· d

dt
(Or)︸ ︷︷ ︸

∆
=O◦

r (apparent derivative)

(3.84)

using {O}−frame
=⇒ O(ṙ) =

[
Ox̂O

OŷO
O ẑO

]︸ ︷︷ ︸
I3×3

· d
dt

(Or) =
d

dt
(Or) (3.85)

From Eq.3.82
=⇒ ṙ =

[
˙̂xB

˙̂yB ˙̂zB
]
· Br +

[
x̂B ŷB ẑB

]
· d
dt

(Br) (3.86)

= ωB ×
[
x̂B ŷB ẑB

]
· Br +

[
x̂B ŷB ẑB

]
· d
dt

(Br)

(3.87)

using {B}-frame
=⇒ B(ṙ) = BωB × Br︸ ︷︷ ︸

account for coordinates
frame axes is moving

+
d

dt
(Br)︸ ︷︷ ︸

apparent derivative

(3.88)

Definition 3.1.42 (Plücker Coordinates) Given {B}-frame we define {eB1
, eB2

, ...eB6
}

a 6-dimensional motion basis vectors that can be used to define coordinate
free twists as follows Eq. 3.89.

Vbody = α1 · eB1
+ ...+ α6 · eB6

(3.89)

where: [
α1 α2 α3 α4 α5 α6

]T
= BVbody (3.90)

[
1 0 0 0 0 0

]T
means rotation about x̂B at unit speed,V = eB1 (3.91)[

0 1 0 0 0 0
]T

means rotation about ŷB at unit speed,V = eB2
(3.92)[

0 0 1 0 0 0
]T

means rotation about ẑB at unit speed,V = eB3
(3.93)[

0 0 0 1 0 0
]T

means motion along x̂B at unit speed,V = eB4
(3.94)[

0 0 0 0 1 0
]T

means motion along ŷB at unit speed,V = eB5
(3.95)[

0 0 0 0 0 1
]T

means motion along ẑB at unit speed,V = eB6 (3.96)

We call α1, α2, ..., α6 Plücker Coordinates that corresponds to motion basis
vector eB1 , eB2 , ...eB6 .

Remark 3.1.33 By using {O}-frame to represents a twist we get Eq. 3.97

OVbody = α1 · OeB1 + ...+ α6 · OeB6 =
[
OeB1

... OeB6

]
· OVbody (3.97)

where: [
OeB1 ... OeB6

]
= OXB =

[
AdOTB

]
(3.98)
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Definition 3.1.43 (Spatial Acceleration Computation) Given a body twist,
the corresponding spatial acceleration is Eq. 3.99.

Abody =
d

dt
(Vbody) =

[
ėB1

... ėB6

]
· BVbody +

[
eB1

... eB6

]
· d
dt

(BVbody)
(3.99)

If {B}-frame does not change then we get Eq. 3.100.

V̇body =
[
eB1 ... eB6

]
· B

◦
Vbody (3.100)

otherwise
[
ėB1 ... ėB6

]
need to be computed.

Remark 3.1.34 Considering the transformation OTB = (R, p), the correspond-
ing derivative

[
ėB1 ... ėB6

]
, using {O}-frame, when {B}-frame has instanta-

neous velocity VB =

[
ω
v

]
is:

[
O ėB1

... O ėB6

]
= OẊB =

d

dt
[AdOTB

]

=
d

dt

([
R 0

[p] ·R R

])
=

[
Ṙ 0

([p] ·R)′ Ṙ

]
=

[
[ω] 0
[v] [ω]

]
· OXB (3.101)

Proof based on the following identities:

Ṙ = ω ×R

ṗ = v + ω × p

[R · ω] = R · [ω] ·RT

[w1 × w2] = [w1] · [w2]− [w2] · [w1]

Remark 3.1.35 We define [VB×] as the linear operator that corresponds to
cross product induced by the twist VB Eq. 3.102

[VB×]
∆
=

[
[ω] 0
[v] [ω]

]
(3.102)

s.t.

OẊB = [VB×] · OXB (3.103)

which is similar in construction with angular velocity ω in Instantaneous
Velocity of Rotating Frames 3.1.34 in Eq. 3.52

d

dt
RA(t) = [ωA] ·RA(t)
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Remark 3.1.36 Equation 3.103 is coordinate independent.

Definition 3.1.44 (Spatial Cross Product) Given two spatial velocities, V1
and V2, their spatial cross product, corresponding to linear operator Eq. 3.102
from Eq. 3.103, is Eq. 3.104

V1 × V2 = [V1×] · V2 =

[
ω1

v1

]
×
[
ω2

v2

]
∆
=

[
ω1 × ω2

ω1 × v2 + v1 × ω2

]
∈ R6 (3.104)

Definition 3.1.45 (Spatial Cross Product Properties) Assuming {A}-frame
is moving w.r.t. {O}-frame with velocity VA then we have the following proper-
ties:

OẊA = [OVA×] · OXA (3.105)

[X · V×] = X · [V×] ·XT (3.106)

Definition 3.1.46 (Spatial Acceleration with Moving Reference Frame)
Considering a body with velocity Vbody (w.r.t. inertial frame), and OVbody and
BVbody be its Plücker coordinates w.r.t. {O} and {B} then the Eq. 3.107 is the
spatial acceleration in {B}-frame and Eq. 3.108 is in {O}-frame.

BAbody =
d

dt

(
BVbody

)
+ BVB × BVbody (3.107)

OA = OXB · BA (3.108)

Proof

Eq 3.107 it’s a direct result of applying Eq. 3.99 and Eq. 3.103.

For Eq. 3.108 we have:

OAbody =
d

dt
(OVbody) =

d

dt
(OXB · BVbody)

= OẊB · BVbody + OXB · B
◦
Vbody

= [OVB×] · OXB · BVbody + OXB · BV̇body

= OXB · { BXO · [OVB ] · OXB︸ ︷︷ ︸
Eq.3.106

= [BXO·OVB×]=[BVB×]

·BVbody + B
◦
Vbody}

= OXB · {B
◦
Vbody +

BVB × BVbody︸ ︷︷ ︸
Eq.3.107

= BAbody

}
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3.2 Rigid Body dynamics

3.2.1 Spatial Force (Wrench)

Definition 3.2.1 (Spatial Force) Given a rigid body with many forces acting
on it, and given an arbitrary point O in space Fig. 3.19, the net effect of these
forces can be expressed as a force f , acting along a line passing through O Eq.
3.109, and torque nO about point O Eq. 3.110

f =
∑
i

fi (3.109)

τO = nO =
∑
i

(O⃗Pi)× fi (3.110)

f1
f2

f3fn

P1

P2
P3

Pn

O

q

Figure 3.19: Rigid body

We define as the Spatial Force (Wrench) the 6D vector of the form Eq.
3.111

F =

[
nO

f

]
(3.111)

Remark 3.2.1 (Changing the torque reference point) Given the torque
around reference point nO, we can computer the torque around another point
nq as follows Eq. 3.112.

nq =
∑
i

( ⃗qPi)× fi = nO +
∑
i

( ⃗qPi − O⃗Pi)× fi

= nO + q⃗O ×
∑
i

= nO + q⃗O × f

= n0 + f × O⃗q (3.112)
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Definition 3.2.2 (Spatial Force in Plücker Coordinate Systems) Given
a frame {A}, the Plücker coordinate of a spacial force F is given by Eq. 3.113

AF =

[
AnOA
Af

]
(3.113)

For the transformation ATB = (ARB ,
ApB), Fig. 3.20 the corresponding

spatial force coordinate transformation is Eq. 3.114.

AF = AX∗
B · BF (3.114)

where
AX∗

B = BXT
A (3.115)

{A}

x̂A
ŷA

ẑA

{B} x̂B

ŷB

ẑB

Figure 3.20: spatial force coordinate transformation

Proof Eq. 3.114:

Force: Af = ARB · Bf (free vector) (3.116)

Torque: AnOA
= AnOB

+ A( ⃗OAOB)× Af

= ARB · BnOA
+ ARB · (−BpA × Bf) (3.117)

= ARB · BnOA
− ARB · [BpA] · Bf (3.118)

Eq.3.1163.118
=⇒

[
AnOA
Af

]
=

[
ARB −ARB · [BpA]
0 ARB

]
︸ ︷︷ ︸

∆
=AX∗

B

·
[
BnOB
Bf

]
(3.119)
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Definition 3.2.3 (Power: Wrench-Twist pair) Suppose a rigid body has a
twist AV = (Aω,AvOA

) and a wrench AF = (AnOA
,Af) acting on the body.

Then the power is Eq. 3.120

P = (AV)T · AF (3.120)

= (Aω)T · AnOA︸ ︷︷ ︸
rotationalPower

+ AvTOA
· Af︸ ︷︷ ︸

linearpower

(3.121)

Remark 3.2.2 Power is a coordinate-free quantity.

Definition 3.2.4 (Joint Torque) Consider a ling attached to a 1-degree of
freedom joint (revolute or prismatic). Let Ŝ be the screw axis of the joint. The
velocity of the link induced by the point motion is given by V = Ŝ · θ̇ and F is
the wrench provided by the joint Fig. 3.21. We can define the power produced
by the joint as Eq. 3.122.

P = VT · F = ŜT · F︸ ︷︷ ︸
∆
=τ (scalar)

·θ̇ ∆
= τ · θ̇ (3.122)

where :

τ = ŜT · F = FT · Ŝ (3.123)

{O}

;
V⃗

x̂O

ŷO

ẑO

F⃗

Figure 3.21: Joint Torque

We refer to τ as joint torque or generalized force and it represents the
projection of the wrench onto the screw axis, i.e. the effective part of the wrench.
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3.2.2 Spatial Momentum

Linear Rotational

Velocity: v = ṙ ω = ω̂ · θ̇, v = ω × r
Acceleration: a = r̈ α = ω̇
Force / Torque f = m · a n = r × f
Momentum L = m · v ϕ = r × L

= r × (m · v)
= r × (m · ω × r)
= m · (r × ω × r)
= m · r × (−r)× ω
= m · [r] · [−r] · ω

Inertia Matrix Ī ∈ R3×3 Ī = m · [r] · [−r]

Table 3.1: Point-mass kinematic / dynamic properties Fig. 3.22

{O}

x̂O

ŷO

ẑO

r̂
f̂

v̂ω̂

;

Figure 3.22: Point-mass

Definition 3.2.5 (Rotational Inertia) Based on table 3.1, we define the Ro-
tational Inertia of a rigid body as Eq. 3.124 where ρ is the density function.

Ī
∆
=

∫
V

ρ · [r] · [−r]T dv (3.124)

Remark 3.2.3 Ī depends on the coordinate system.

Remark 3.2.4 Ī is a constant matrix if the origin of the reference frame coin-
cides with the center of mass (CoM)

Definition 3.2.6 (Center of Mass) A point C is defined as the center of
mass (CoM) as Eq. 3.125

CoM
∆
=

1

m

∑
i

mi · ri (3.125)
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Remark 3.2.5 If C is the center of mass, then we have the following prop-
erties:

1

m
·
∑
i

mi · (C⃗ri) = 0 (3.126)∑
i

mi · (C⃗ri) = 0 =⇒
∑
i

mi · [C⃗ri] = 0 (3.127)

Proof:
For Eq. 3.126:

FromEq.3.125
=⇒ 1

m
·
∑
i

mi · ri − C = 0 =⇒
∑
i

mi · ri −m · C = 0

=⇒
∑
i

mi · (ri − C) = 0 =⇒
∑
i

mi · (Cri) = 0

For Eq. 3.127:

FromEq.3.126
=⇒ [

∑
mi · (Cri)] = [0] =⇒

∑
[mi · (Cri)] = [0] =⇒

∑
mi · [(Cri)] = [0]

Definition 3.2.7 (Momentum) Given a rigid body with spatial velocity VC =
(ω, vC) expressed at the center of mass C, the linear momentum is defined
as Eq. 3.128 and the angular momentum about center of mass is defined as
Eq. 3.129

L = m · vC (3.128)

ϕ = ĪC · ω (3.129)

Proof:
Eq. 3.128:

L =
∑
i

mi · vi =
∑
i

mi · (vC + ω × C⃗ri) = (
∑
i

mi) · vi +
∑
i

mi · (−C⃗ri)︸ ︷︷ ︸
Eq.3.126

= 0

×ω

Eq. 3.129:

ϕC =
∑
i

C⃗ri × L =
∑
i

C⃗ri × (mi · vi) =
∑
i

C⃗ri × (mi · vC +mi · ω × ⃗Cri)

=
∑
i

C⃗ri × (mi · vC)︸ ︷︷ ︸
Eq.3.126

= 0

+
∑
i

mi · C⃗ri × ω × C⃗ri =
∑
i

mi · C⃗ri × ω × C⃗ri = ĪC · ω
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Remark 3.2.6 Given an arbitrary point O, the angular momentum about it
relative to the center of mass C is Eq. 3.130 Fig. 3.23.

ϕO = ϕC + O⃗C × L (3.130)

{O}

C

xO

yO

zO

O⃗C = c

ω⃗

L⃗ = m · v⃗C
v⃗C

ϕC = ĪC · ω⃗
; ;

Figure 3.23: Angular momentum about an arbitrary point

Definition 3.2.8 (Spatial Momentum) Given the angular momentum ϕ
and the linear momentum of a rigid body, we define the corresponding Spa-
tial Momentum h as Eq. 3.131.

h =

[
ϕ
L

]
∈ R6 (3.131)

Definition 3.2.9 (Change Reference Frame for Spatial Momentum) Under
transformation ATC = (ARC,ApC) the corresponding spatial momentum
transformation is Eq. 3.132 which is the same operator required by spatial
forces.

Ah = AX∗
C · Ch (3.132)

Proof:

AL = ARC · CL (free vector) (3.133)

Eq.3.130
=⇒ AϕOA

= ARC · CϕOC
+ ARC · (−CpA × CL)

(3.134)

Using: Eq.3.133 and Eq.3.134
=⇒

[
AϕOA
AL

]
=

[
ARC

ARC · [−CpA]
0 ARC

]
︸ ︷︷ ︸

AX∗
C

·
[
CϕOC
CL

]
(3.135)
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Definition 3.2.10 (Spatial Inertia) Spatial inertia of a rigid body defines the
linear mapping Fig. 3.24 between spatial velocity (twist) and spatial momentum
Eq. 3.136, connecting Moving Space: M and Force Space: F and it has the
following form Eq. 3.137.

h = I · V (3.136)

CI By Eq.3.128 and Eq.3.129
=

[
C ĪC 0
0 m · I3

]
(3.137)

M
(XA)

F
(X∗

A)

V

A

h

F

I

BXA
BX∗

A = AXT
B

Figure 3.24: Spatial inertia mapping

Definition 3.2.11 (Changing Reference Frame for Spatial Inertia) Given
to 2 frames {C} respectively, {A} the spatial inertia representation in one frame
w.r.t. the other is given by Eq. 3.138.

AI = AX∗
C · CI · CXA (3.138)

Proof:

Ah = AI · AV
= AX∗

C · Ch
= AX∗

C · CI · CV
= AX∗

C · CI · CXA︸ ︷︷ ︸
=AI

·AV (3.139)
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Eq. 3.139 can be interpreted using spatial inertia mapping Fig. 3.24. Spa-
tial momentum in {A}-frame is the application of spatial velocity in {A}-frame
transformed into {C}-frame, computing the spatial momentum in {C}-frame
and in the end, going back to {A}-frame.

Remark 3.2.7 When {A}-frame has the same orientation as the orientation
of the center of mass frame (ARC = I3), we have Eq. 3.140. The change of
reference frame of spatial inertia representation has an explicit form Eq. 3.141

AXC =

[
I3 0

[ApC I3]

]
(3.140)

AI =

[
C Ī +m · [ApC ] · [ApC ]T m · [ApC ]

m · [ApC ]T m · I3

]
(3.141)

Definition 3.2.12 (Spatial Force differentiation) Given a spatial force
vector F , expressed using spatial force bases vectors

[
e∗B1

e∗B2
... e∗B6

]
=

X∗
B , its corresponding differential Ḟ is Eq. 3.142

Ḟ = Ẋ∗
B · BF +X∗

B · (BF)′︸ ︷︷ ︸
B

◦
F :apparent derivative of spatial force

(3.142)

Remark 3.2.8 The differential of spatial force bases vectors ė∗Bi
is Eq.

3.143 where ×∗ operator is the cross product between current spatial velocity
and applied spatial force Eq. 3.144. By defining Eq. 3.145 we can rewrite Ẋ∗

B

as Eq. 3.146 which resembles in form with the differential of motion basis
3.103.

ė∗Bi
= VB ×∗ ·e∗Bi

(3.143)

V ×∗ F ∆
=

[
ω × nO + vO × f

ω × f

]
(3.144)

[V×∗] =

[
[ω] [vo]
0 [ω]

]
(3.145)

Ẋ∗
B = [V×∗

B ] ·X∗
B (3.146)

Proof:
The approach is similar to the proof sketched in 3.1.34 or it can be deduced

using physics.

Remark 3.2.9 Spatial force cross-product has the following property:

[V×∗] = −[V×]T (3.147)
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Remark 3.2.10 By using Definition 3.2.12 and Remark 3.2.8 one can compute
the differentiation of spatial force as Eq. 3.2.8

Ḟ = X∗
B · B

◦
F + [VB×∗] ·X∗

B · BF (3.148)

Remark 3.2.11 Assuming {A}-frame is moving with velocity AVA then the
derivative of F in {A}-frame is Eq. 3.149 and the derivative of h in {A} is
3.150.

A

(
d

dt
F
)

︸ ︷︷ ︸
coordinate free

=
d

dt
(AF)︸ ︷︷ ︸

AX∗
A·A

◦
F

+ AVA ×∗ AF︸ ︷︷ ︸
[AVA×∗]·AX∗

A·AF

(3.149)

A

(
d

dt
h

)
=

d

dt
(Ah)︸ ︷︷ ︸

AXA· d
dt (

Ah)

+ AVA ×∗ Ah︸ ︷︷ ︸
[AVA×∗] · AX∗

A︸ ︷︷ ︸
(AX∗

A
)′

·Ah

(3.150)

3.2.3 Newton-Euler Equation

Definition 3.2.13 (Newton-Euler equation) By adopting the spatial vec-
tors, the Newton-Euler equation has the same form in any frame Eq. 3.151,
on the other hand, most of the other kinds of derivations end up with a more
complex form.

F =
d

dt
h = I · Abody + Vbody ×∗ I · Vbody (3.151)

Choosing an arbitrary reference frame {B} we get Eq. 3.152

BF = BI · BAbody +
BVbody ×∗ BI · BVbody (3.152)

The Newton-Euler Eq. 3.151 remains the same even when the chosen frame
of reference is away from the center of mass.

Proof: Eq. 3.151

BF = B

(
d

dt
h

)
= B

(
d

dt
(I · V)

)
= B(I · A+ İ · V)

This equality
must be
proven
= B

 I · A︸ ︷︷ ︸
due to change
in velocity V

+ V ×∗ I · V︸ ︷︷ ︸
accounts for the fact
that inertia is moving

 (3.153)

We introduce an inertial frame {O}, w.r.t. which the computation will be
done and we consider {B} asa frame attached to the body which imply that
Vbody = VB and BI is constant Fig. 3.25.
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{O}
xO

yO

zO

{B}
xB

yB

zB

Body

F

Vbody

Figure 3.25: Newton-Euler in inertial frame

then :

d

dt
(Oh) =

d

dt
(OI · OV) (3.154)

= Oİ · OV + OI · OA
since Oİ changes

w.r.t. time,
we switch from
{O} to {B}

=⇒ =
d

dt
(OX∗

B · BI · BXO︸ ︷︷ ︸
Eq.3.138

) · OV + OI · OA

= OẊ∗
B · BI · BXO · OV

+ OX∗
B · BI · BẊO︸ ︷︷ ︸

Remark
3.2.12

·OV + OI · OA

= [OVB×∗] · OX∗
B · BI · BXO︸ ︷︷ ︸

=OI

·OV

− OX∗
B · BI · BXO · [OVB×] ·

OV=VB︷︸︸︷
OV︸ ︷︷ ︸

=0

+OI · OA

= [OVB×∗] · OI · OV + OI · OA
= OI · OA+ OVB ×∗ OI · OV (3.155)
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Remark 3.2.12 (Note) It can’t be computed directly so instead, we rely on
the implicit, product rule differentiation Eq. 3.156, to reduce the result to OẊB

Eq. 3.103.

=⇒ (OXB · BXO) = I (3.156)

=⇒ OẊB · BXO + OXB · BẊO = 0

=⇒ BẊO = −BXO · OẊB · BXO

= −BXO · [OVB×] · OXB︸ ︷︷ ︸
Eq. 3.103

·BXO

= −BXO · [OVB×] (3.157)

3.3 Multi-body dynamics of Open Chains

3.3.1 Open-Chain Dynamics

Definition 3.3.1 (Open Chain) Consist of multiple rigid links ( bodies ) con-
nected through joints (revolute/prismatic) Fig. 3.26. The corresponding equa-
tions of motion are a set of 2nd-order differential equations Eq. 3.158

τ = M(θ) · θ̈ + c̃(θ, θ̇) (3.158)

where :

c̃(θ, θ̇) = c(θ, θ̇) + τg(θ) + JT · Fext

(3.159)

θ ∈ Rn: vector of joint variables

τ ∈ Rn: vector of joint forces / torques

M(θ) ∈ Rn×n: mass matrix

c̃(θ, θ̇) ∈ Rn: ( forces that lump together centripetal, Coriolis, gravity,

friction terms, and torques induced by external forces )

Definition 3.3.2 (Forward Dynamics) Is the process of determining the ac-
celeration θ̈ given the state (θ, θ̇) as well as the joint forces/torques Eq. 3.160.

θ̈ = FD(τ, θ, θ̇,Fext) (3.160)

Definition 3.3.3 (Inverse Dynamics) Is the process of finding torques/forces
given the state (θ, θ̇) and desired acceleration θ̈ Eq. 3.161.

τ = ID(θ, θ̇, θ̈,Fext) (3.161)
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Link 0

Link 1

Joint 1

Link 2

Joint 2

Link 4

Joint 4

Link 3
Joint 3

Figure 3.26: Open Chain

Definition 3.3.4 (Lagrangian versus Newton-Euler Methods ) There are
two ways to derive the equation of motion for an open-chain robot, each of them
with advantages and disadvantages:

Lagrangian Formulation Newton-Euler Formulation
-Energy based method -Balance of forces/torques
-Dynamic equation in closed form -Dynamic equations in
-Often used for study of dynamic numeric/recursive form
properties and analysis of -Often used for numerical
control methods solution of forward /

inverse dynamics

Remark 3.3.1 (Mixed approach) Apart from the Lagrangian formulation,
which can be interpreted as a top-down, reduced formulation, starting from the
entire system at once, and the Newtonian, where we build the equation button-
up, in a redundant way, but using an iterative approach, one can choose a 3rd

way, a mixed approach, in which we still use the Newtonian way, but we choose
to characterize the degree of freedom of each rigid body in a reduced way. This
leads to a result where we get to use the best of both worlds, as the computation
process remains iterative while the result is computed in a reduced manner. In
a nutshell, this is what we obtain by using Featherstone Algebra.

3.3.2 Inverse Dynamics

Remark 3.3.2 (Chain notations) Given an Open Chain with N links, we
define:

• Parent of body i: p(i)

• Children of body i: c(i)
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• Joint i connects p(i) to i

• Frame {i} is attached to body i at the corresponding joint

• Si is the spatial velocity of joint i

• Vi and Ai are the spatial velocity and spatial acceleration of body i

• Fi is the wrench onto body i from body p(i)

Note: By default, all vectors (Si,Vi,Fi) are expressed in local frame {i}.

Definition 3.3.5 (Velocity and Acceleration propagation - Forward Pass)
Given the joint velocity θ̇ and the joint acceleration θ̈ for an open chain we
compute the body spatial velocity Vi and the spatial acceleration Ai as follows:
Eq. 3.162 and Eq. 3.163.

iVi =
(
iXp(i)

)
· p(i)Vp(i) + iSi · θ̇i (3.162)

iAi = (iXp(i)) · p(i)Ap(i) +
iVi × iSi · θ̇i + iSi · θ̈i (3.163)

Proof:

3.162
=⇒ V1 = S1 · θ̇1

Vi =
i∑

j=1

Vj/(j−1) =

(i−1)∑
j=1

Vj/(j−1) + Vi/(i−1) = V(i−1) + Vi/(i−1)

= V(i−1) + Si · θ̇i (coordinate free)

3.163
=⇒ Ai = V̇i = V̇(i−1) + V̇i/(i−1) = A(i−1) +Ai/(i−1)

iAi =
iX(i−1) · (i−1)A(i−1) +

i

 d

dt
( iS2 · θ̇︸ ︷︷ ︸
iVi/(i+1)

)


= iX(i−1) · (i−1)A(i−1) +

d

dt

(
iSi · θ̇i

)
︸ ︷︷ ︸

apparent derivative

+ iVi × iSi · θ̇i︸ ︷︷ ︸
derivative of the frame

= iX(i−1) · (i−1)A(i−1) +
iSi · θ̈ + iVi × iSi · θ̇2 (3.164)

Definition 3.3.6 (Force Propagation - Backward Pass) Given body spa-
tial velocity Vi and spatial acceleration Ai for an open chain with N links, one
must compute the joint wrench Fi and the corresponding torque τi = STi · Fi as
follows Eq. 3.165 and Eq. 3.166

Fi = Ii · Ai + Vi ×∗ Ii · Vi +
∑

j∈c(i)

Fj (3.165)

τi = STi · Fi (3.166)
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Proof: Eq. 3.165 is the direct application of the second law of Newtonian
mechanics.

Remark 3.3.3 By putting together the previous 2 steps, Forward Pass and
Backward Pass, we end up with the solution for the Inverse Dynamics
problem in the form of the Recursive Newton-Euler Algorithm Fig. 3.27
that can be resumed as Alg. 2 where the gravity is incorporated into the virtual
body 0 as a way of integrating gravity in a generically. Another option is to
consider A0 = 0 and to add iIi · iX0 · 0Ag to line 6.

Vi Ai

Fi

Root

Leaf

Figure 3.27: Recursive Newton-Euler Algorithm

Remark 3.3.4 The time complexity of the Recursive Newton-Euler Algorithm
is O(N) in the number of joints.

Remark 3.3.5 As an example, how this is applied for Fig. 3.26, we have:

Body 3:

F3 + Fg3 = I3 · A3 + V3 ×∗ I3 · V3 −Fext
3

=⇒ F3 = I3 · A3 + V3 ×∗ I3 · V3 −Fg3 −Fext
3

τ3 = ST3 · F3

(Note: Fg3 = I3 · 3Ag = I3 · 3X0 · 0Ag)

Body 2:

F2 = I2 · A2 + V2 ×∗ I2 · V2︸ ︷︷ ︸
used to produce motion

+

to the environment︷ ︸︸ ︷
F3 + F4 −

by the environment︷ ︸︸ ︷
Fg2 −Fext

2︸ ︷︷ ︸
used to counteract forces

τ2 = ST2 · F2

Remark 3.3.6 Since the computation of τ can be seen as the projection of
Spatial Force to feasible space (the action that happens only in the direction
where the screw can do work) and since the screws are vector spaces (since
screws are characterized by Lie algebras which are vector spaces as well) we can
conclude that the projection can be computed using the dot product. This process
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has an unexpected result since it allows external forces, which can happen due to
interaction with the environment, to be treated in e general way, by projecting
them as well on the feasible space without being worried about possible changes
in the dynamics of the system (no need for a multi-phase system).

Algorithm 2 Recursive Newton-Euler Algorithm

Require: θ, θ̇, θ̈,Fext,Model
Ensure: τ,F
1: V0 ← 0
2: A0 ← −Ag

3: for i=1,N do
4: iVi ← iXp(i) · p(i)Vp(i) + iSi · θ̇i
5: iAi ← iXp(i) · p(i)Ap(i) +

iSi · θ̈i + iVi × iSi · θ̇i
6: iFi ← iIi · iAi +

iVi ×∗ iIi · iVi
7: end for
8: for i=N,1 do
9: τi ← iSTi · iFi

10: iFp(i) =
iFp(i) +

p(i)X∗
i · iFi

11: end for

3.3.3 Forward Dynamics

Remark 3.3.7 One way to compute the Forward Dynamics equation specific
for a dynamical system is by evaluating, multiple times, the corresponding In-
verse Dynamics, Eq. 3.160, using the RNEA algorithm by selecting the input
parameters in Eq. 3.167 s.t. the resulting τ to correspond either to M or C̃
parameter.

τ = M(θ) · θ̈ + C(θ, θ̇) · θ̇ + τg + JT (θ) · Fext

= RNEA(θ, θ̇, θ̈,Fext)

= M(θ) · θ̈ + C̃(θ, θ̇) (3.167)

Remark 3.3.8 Since the Inverse Dynamics, computed with RNEA(θ, θ̇, θ̈,Fext)
algorithm, can work directly with a given URDF model (a file format that defines
the kinematic tree, joint model and the dynamic parameters of each link) in an
algorithmic way, an explicit formula for M(θ) and C̃(θ, θ̇) it is not required in
the construction of the Forward Dynamics.

Definition 3.3.7 (Forward Dynamics) - the computational steps

1. Calculate C̃(θ, θ̇)

2. Calculate the Mass matrix M(θ)
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3. Solve for θ̈ the equation M(θ) · θ̈ = τ − C̃(θ, θ̇)

Remark 3.3.9 (Calculation of C̃)

τ = C̃(θ, θ̇) by setting θ̈ = 0 in Eq. 3.167

C̃(θ, θ̇) = RNEA(θ, θ̇, θ̈ = 0,Fext)

Remark 3.3.10 (Calculation of M(θ))

τ = M(θ) · θ̈ by setting g = 0, θ̇ = 0,Fext = 0 in Eq. 3.167

=⇒ C̃(θ, θ̇) = 0

=⇒ M:,j(θ) = RNEA(θ, θ̇ = 0, θ̈ = θ̈0j ,Fext = 0)

where :

θ̈0j =


...
1
...

 where: jth element is 1

Remark 3.3.11 By assuming (θ, θ̇), τ,M(θ), C̃(θ, θ̇) as known, we can imme-
diately compute:

θ̈ = M−1 · (τ − C̃)

= FD(θ, θ̇, τ,Fext) (3.168)

This provides a 2nd-order differential equation, Eq. 3.168, in RN , computed in
an algorithmic way, that can be simulated in the joint trajectory over any time
period under a given initial conditions (θ, θ̇) which can be rewritten as a system
of first-order differential equations in R2N as follows Eq. 3.169.

X1 = θ ∈ RN

X2 = θ̇ ∈ RN

Ẋ =

[
Ẋ1

Ẋ2

]
=

[
X2

M−1(X) · (τ − C̃(X1, X2)

]
(3.169)

Remark 3.3.12 The computational time of the Forward Dynamics equation is
a function of the RNEA algorithm. For C̃ we have O(N) as it required only
one evaluation of RNEA. For M(θ) we have O(N2) as we have to evaluate the
RNEA for each column of the mass matrix.
The overall time complexity is given by the computation of the inverse of the
matrix M−1(θ): O(N3).
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CHAPTER 4

System identification

4.1 The analytical, algorithmically constructed,
equation

Remark 4.1.1 Given an open chain with N links, we denote Ji as the Jacobian
of link / body i, where:

Vi = Ji · θ̇ =
[
Ji,1 ... Ji,N

]
·

 θ̇1...
θ̇N


where :

Ji =
[
δi,1 · S1 ... δi,N · SN

]
δi,j =

{
1, if joint j supports body i

0, otherwise

Example:

Given Fig. 4.1 we have:
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Link 0

Link 1

Joint 1

Link 2

Joint 2

Link 4

Joint 4

Link 3
Joint 3

Figure 4.1: Open Chain

Vi=1 = Ji=1 · θ̇ =
[
δi=1,1 · S1 δi=1,2 · S2 δi=1,3 · S3 δi=1,2 · S2

]
·


θ̇1
θ̇2
θ̇3
θ̇4


=
[
S1 0 0 0

]
· θ̇ (coordinate-free)

Vi=2 = Ji=2 · θ̇ =
[
S1 S2 0 0

]
· θ̇

{2}-frame
=⇒ 2V2 =

[
2X1 · 1S1 2S2 0 0

]︸ ︷︷ ︸
2J2

·θ̇

For 4V4
=⇒ 4J4 =

[
4X1 · 1S1 4X2 · 2S2 0 4S4

]
Remark 4.1.2 By evaluating the Inverse Dynamics using the RNEA algo-
rithm, one will end up with a closed-form expression that characterizes the entire
iterative approach, which can then be factorized. The end result structure of the
dynamics provides further properties which can be used for system identification.

Remark 4.1.3 (Dynamics Equation - Structure) In the process of build-
ing an analytical form of the dynamics, we will first analyze a 2−link, open-loop
multibody system, Fig. 4.2. In the end, we will generalize for any number of
links.
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After the Forward pass, the result of Backward pass is:

F2 = (I2 · A2 + V2 ×∗ ·I2 · V2)−Fext
2

F1 = I1 · A1 + V1 ×∗ I1 · V1 + 1X∗
2 · F2

= I1 · A1 + V1 ×∗ I1 · V1︸ ︷︷ ︸
(1)

+2XT
1 · (I2 · A2 + V2 ×∗ ·I2 · V2)︸ ︷︷ ︸

(2)

−2XT
1 · Fext

2︸︷︷︸
(3)

τ2 = 2ST2 · 2F2 = 2ST2 · (2I2 · 2A2 +
2V2 ×∗ ·2I2 · 2V2)− 2ST2 · 2Fext

2

τ1 = 1ST1 · 1F1 = 1ST1 ·
(1)︷︸︸︷
(...)︸ ︷︷ ︸

(A)

+(2X1 · 1S1)T ·
(2)︷︸︸︷
(...)︸ ︷︷ ︸

(B)

− (2X1 · 1S1)T ·
(3)︷︸︸︷
(...)︸ ︷︷ ︸

(C)

where :

(A): Torque at joint 1 due to motion of body 1

(B): Torque at joint 1 due to motion of body 2

(C): Torque at joint 1 due to external force, Fext
2 applied to body 2

Link 0

Link 1

Joint 1

Link 2

Joint 2

Fext
2

Figure 4.2: Open Chain-2 links
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By rewriting the equations in vectorial form one gets:

τ =

[
τ1
τ2

]
=

[
ST1 · (I1 · A1 + ...) + (2X1 · S1)T · (I2 · A2 + ...) + (2X1 · S1)T · (−Fext

2 )
0 · (I1 · A1 + ... ) + ( S1)T · (I2 · A2 + ...) + ( S1)T · (−Fext

2 )

]

(4.1)

=

[
ST1
0

]
︸ ︷︷ ︸
1JT

1

·(I1 · A1 + ...) +

[
(2X1 · S1)T
ST2

]
︸ ︷︷ ︸

2JT
2

·(I2 · A2 + ...) +

[
(2X1 · S1)T
ST2

]
︸ ︷︷ ︸

2J2
2

·(−Fext
2 )

(4.2)

Where:[
S1 0

]︸ ︷︷ ︸
1J1

[
2X1 · S1 S2

]︸ ︷︷ ︸
2J2

(4.3)

Eq. 4.2: Each line i represents the sum of all the projections of the spatial forces over joint i

Eq. 4.2: Each column i represents body’s i spatial force projection over all joints

Remark 4.1.4 From: Eq. 4.2, Eq. 4.3 we can conclude that the torque vector
τ is the product between the Jacobian transpose and the force ( induced by each
body or by external forces, e.g. gravity ) and it can be interpreted as the motion
induced by the force.

τ = JT · F

Remark 4.1.5 (Generalization) Given N links the general vectorial form is:

τ =

N∑
i=1

{
JT
i · (Ii · Ai + Vi ×∗ Ii · Vi)︸ ︷︷ ︸

The (internal) force
induced by the body i

+JT
i · (−Fext)

}
(4.4)
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Remark 4.1.6 By applying the following change of variables to Eq. 4.4 (com-
putation done for internal forces):

V = Ji · θ̇ (4.5)

Ai = V̇i = Ji · θ̈ + J̇i · θ̇ + Vi × Ji · θ̇ (4.6)

− Where Ji represents the Jacobian of the body i as introduced in Remark: 4.1.1

− We rewrite the torque, τ , as a function of θ, θ̇ and θ̈

=⇒ τ =

N∑
i=1

JT
i · Ii · Ji · θ̈ + JT

i · Ii · J̇i · θ̇ + JT
i · Ii · Vi × Ji · θ̇ + JT

i · Vi ×∗ Ii ·
Ji·θ̇︷︸︸︷
Vi

=

(
N∑
i=1

JT
i · Ii · Ji

)
︸ ︷︷ ︸

M(θ)

·θ̈ +
N∑
i=1

JT
i · (Ii · J̇i + Ii · Vi × Ji + Vi ×∗ Ii · Ji)︸ ︷︷ ︸

C(θ,θ̇)

·θ̇

(4.7)

= ID(θ, θ̇, θ̈,Fext,Model)

Remark 4.1.7 By using a reduced representation of the degrees of free-
dom of each rigid body, constructed using the Lie Algebras, in a Newton-Euler
Algorithm for Inverse Dynamics, one ends up with an equation,Eq. 4.7, that re-
sembles the energy-based Euler-Lagrange reduced representation equation.

Remark 4.1.8 Eq. 4.7 represents the 3rd way of building the DAE/ODE for
multibody dynamics, other than the Newton-Euler and Lagrange/Hamiltonian
way.

Remark 4.1.9 For adding external forces in Eq. 4.7, one must add the term
JT (θ)·Fext. The gravity term, as an example of external forces, can be factorized
and added as well:

N∑
i=1

JT
i · iIi · iX0 · (−0Ag) (4.8)

4.2 Parametric estimation: inertia matrix, mass,
the center of mass

Remark 4.2.1 By knowing τ, Ji, θ, θ̇, θ̈, J̇i,Vi×,Vi×∗ we observe that the Eq. 4.7
is linear in spatial inertia, Ii. This introduces the options for a Linear Least
Square approach for parametric estimation for the inertia and mass for each
of the rigid bodies as the spatial inertia, Ii is a function of both of them.
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Remark 4.2.2 Each Spatial Inertial of each body is represented relative to the
center of the mass, Eq. 4.9. Since Eq. 4.7 is just another computational pro-
cess of Inverse Dynamics, the Spatial Inertia of each body will end up being
represented in joint frames as the equation it’s written as a function of (θ, θ̇, θ̈),
hence, the iIi, after translation, will look like Eq. 4.10.

CIi =
[
C Īi 0
0 m · I3

]
(4.9)

iIi =
[
C Īi +m · [ipCi

] · [ipCi
]T m · [ipCi

]
m · [ipCi ]

T m · I3

]
(4.10)

Remark 4.2.3 Since the Eq. 4.10 of all the bodies, represents Eq. 4.10 trans-
lated, it also contains, the parameters, ipCi , that characterize the center of the
mass expressed in a joint frame i. Hence, Eq. 4.7, expressed in joint space,
it’s linear in the inertia matrix, mass, and center of the mass of all the
bodies.

Definition 4.2.1 (Sensor Input) The measurements from sensors are: τ, θ, θ̇, θ̈.

Remark 4.2.4 (Standard form of the problem) By computing Ji, J̇i,Vi×,Vi×∗,
one can either choose to use directly the Eq. 4.7 or to put the problem in a gen-
eral form Eq.4.11 and to solve for π Eq. 4.12.

A · π +B = τ (4.11)

πi = [m,hx, hy, hz, Ixx, Ixy, Ixz, Iyy, Iyz, Izz]
T ∈ R10 (4.12)

where: h = [hx, hy, hz]
T = m · CoM

Remark 4.2.5 (Linear Least Square formulation) Since we always have
an initial guess, either from the factory ( using the CAD model ) or from a
previous prediction, one can choose to leverage this prior knowledge of the pa-
rameters by modeling the solution as an optimization problem Eq.4.13. The
result is an algorithm that will continuously improve the estimation of the pa-
rameters after each measurement.

min
π

measurements∑
i=1

||Ai · π +Bi − τ i||2 (4.13)
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Remark 4.2.6 (A better approach) The approach introduced in Remark: 4.2.4
has 2 disadvantages:

• one must recompute A and B every time when the structure of the equation
changes

• one must compute J̇i

Instead of coming up with the previous closed form for the linear least square,
one can observe that Eq. 4.7 is equivalent to the Inverse Dynamics which can be
computed iteratively using a modified RNEA algorithm where the model of the
robot ( that contains all the parameters that need to be estimated ) is also part
of the input parameters Eq. 4.14.

For this, we leverage CasADi’s functionality of generating a mathematical
expression that is equivalent to running the algorithm itself.

τ = RNEA(θ = V alue1, θ̇ = V alue2, θ̈ = V alue3,Fext,Model(π = Symbolic))
(4.14)

By evaluating the algorithm with constant values for θ, θ̇, θ̈, τ,Fext for each
instance of sensors measurements, as well as with the model as a function of
symbolic parameters representation of π, one gets, as output, an expression
linear in π. This can also be seen as a change of variable on the expression
level, where we change all the numerical values for the parameters we want to
identify with variables. As the last step, the extraction of A and B is done also,
automatically using CasADi’s functionality of extracting the linear coefficients
from expressions Eq. 4.15.

min
π

measurements∑
i=1

||RNEA(θi, θ̇i, θ̈i,Fext
i )− τ i||2 (4.15)

Remark 4.2.7 By checking the structural sparsity of matrix A, Fig. 4.3 - corre-
sponding to Fig. 4.4, one can observe that, independently of the sensor readings,
the parameters for the first 2 links are not identifiable.

Figure 4.3: 3 DOF robot - structural sparsity - τ

By changing the torque sensor to a sensor that can measure spatial forces
(e.g. forces and torques) the only unidentifiable link is the first one Fig. 4.5.
Also, we get 6 times more rows.
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Link 0

Figure 4.4: 3 DOF robot

Remark 4.2.8 For a better understanding of why the first link is not identifi-
able and all the other are one must take a close look at what is happening at the
level of each joint during data acquisition and system identification.

[
ST1
0

]
· (I1︸ ︷︷ ︸

(1)

·A1 + . . .) +

[
(2X1 · S1)T
ST2

]
· (I2︸ ︷︷ ︸

(2)

·A2 + . . .) + . . .

In (2) one can observe that each column of I2 gets projected on the joint S1
for each data acquisition. As the system changes with time, the configuration of
the system changes as well. Since the adjoint matrix, 2X1 is a function of the
configuration it also changes as well over time. This results in projecting each
column of the spatial inertia, I2, on the different representation of joint S1.
This way, during different measurements, different parameters get to be excited
once in a while and therefore all of them become identifiable.

This is not the case for the first joint (1), which is fixed as it doesn’t have a
parent and therefore it doesn’t have an adjoint matrix X as well.

Remark 4.2.9 (Parametric estimation of Link 1)
There are 2 ways possible to identify the parameters for link 1:

• Forcing Joint 1 to be an Universal Joint, Fig. 4.6, e.g. it has 2 DOF.
This is equivalent to adding another joint as a parent for joint 1 where the
distance between them is 0.

• After identifying parameters for the last n−1 links, apply Nonlinear Least
Squares parametric estimation using multiple shooting to determine the
parameters for Link 1.

Remark 4.2.10 The Nonlinear Least Squares (using multiple-shooting), even
though, is a more general approach is significantly more computationally inten-
sive than the Linear Least Squares approach for an ODE of a multi-body system.
Moreover, it’s less precise.
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Figure 4.5: 3 DOF robot - structural sparsity - F

Figure 4.6: Universal Joint [23]
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CHAPTER 5

Experimental setup

For the validation of the proposed solution, particular decisions, with respect
to the testing process, were taken. These have an impact on the following:

• environment setup

• sensitivity analysis computation

• robot definition

• model predictive control and objective function definition

The open-source implementation of the project is available at [10].

5.1 Environment definition

The process is done in a contained, simulated environment. This is necessary
due to the nature of the problem, as we want to be able to test the solution in
full generality. At the same time, we want to contain the engineering complexity
required by not having to work with a real robot. This way we get to ignore
problems such as time latency in data acquisition, clock synchronization between
multiple sensors, and changes in the properties of sensors and control systems
due to external factors over a long period of time, etc. As a rule of thumb,
all of these problems required supplementary attention and involve embedded
programming (system identification and control applied on a mechatronic level
in a hierarchical way) using a real-time operating system. The result is an
intermediate interface that abstractisezes the low-level complexity of each of
the sub-components of the robot and tries to contain the stochasticity of each
of them. These subtasks can easily grow to become subjects on their own, hence,
the simulation environment was more suitable.
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5.2 Sensitivity analysis

The development framework selected provides mathematical modeling tools as
well as optimization tools and offers easy access to sensitivity analyses. In
this regard, CasADi was chosen, an open-source software tool for numerical
optimization in general and optimal control (i.e. optimization involving dif-
ferential equations) in particular. The main scope of CasADi is automatic
differentiation. Besides that, it also offers support for external ODE/DAE
integrators, sensitivity analysis, as well as nonlinear optimization tools.
All these functionalities are accessible using a height-level API, which is im-
plemented using a functional design. This symbolical framework makes the
modeling problems more accessible by letting the developer focus more on the
problem and less on the low-level code functionalities.

5.3 Robot definition

The testing process is applicable to any open-loop robot. This is achieved by
building the robot’s ODE, previously introduced in chapter 2, in a generic way
starting from the corresponding URDF multi-body file which contains all the
necessary information about each rigid body as well as the tree structure.

5.3.1 URDF file structure

This URDF file format is an XML-type file format that defines the geometry
of a robot in a tree structure. Since it can describe only rigid body robots the
file is a description for links and joints Code 5.1.

1 <robot name="name">

2 <link> </link>

3 <link> </link>

4 <link> </link>

5

6 <joint> </joint>

7 <joint> </joint>

8 </robot>

Listing 5.1: URDF example

A link, Fig. 5.1, represents the properties of a rigid body, like inertia, collision
properties as well as visual features Code 5.2.

The visual tag, as its name suggests is used for visual purposes and specifies
the shape of the object (e.g.:mesh, box, cylinder, sphere). The reference frame
used by the visual element is relative to the reference frame of the link and it is
maintained by origin.

Most of the time, the collision geometry tag is the same as visual geometry,
or its geometry is a little bit bigger. The frame of reference of the collision
element is maintained into origin element and it is relative to the reference
frame of the link.
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Figure 5.1: Link [21]

The inertial tag is used for building the physical model ( the robot’s ODE
). The reference frame’s origin is maintained in the field origin and is the pose
(e.g. position and orientation) of the inertial reference frame, expressed relative
to the link reference frame. The origin is always in the center of gravity of
the rigid body but the axes of the inertial reference frame can have arbitrary
orientation.

1 <link name="link_name">

2

3 <visual >

4 <origin xyz="0 0 2" rpy="1.2 0 0" />

5 <geometry >

6 <cylinder length="0.2" radius="0.1"/>

7 </geometry >

8 </visual >

9

10 <collision >

11 <origin xyz="0 0 2" rpy="1.2 0 0" />

12 <geometry >

13 <cylinder length="0.22" radius="0.11"/>

14 </geometry >

15 </collision >

16

17 <inertial >

18 <origin xyz="0 0 2" rpy="1.2 0 0" />

19 <mass value="5"/>

20 <inertia

21 ixx="1.0" ixy="0.0" ixz="0.0"

22 iyy="1.0" iyz="0.0"

23 izz="1.0"/>

24 </inertial >

25 </link>

Listing 5.2: link example

Joints, Fig. 5.2, are used to describe the relative motion between two consecu-
tive links. A joint can be of the following types: prismatic, revolute, continuous,
planar, fixed and floating. Code 5.3

The origin tag represents the transformation from the parent link to the
child link. The location of the joint is at the origin of the child link. Hence, the
origin represents the pose of the child frame w.r.t. the parent frame.
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Figure 5.2: Joint [22]

The axis tag is defined in the joint frame and it can represent one of the
following: the axis of translation for prismatic joints, the axis of rotation for
revolute joints, or the surface normal for planar joints. The floating and the
Fixed joint does not require a specific axis, hence they don’t use the field.

Other properties, a joint can have, are represented by the degree of freedom
limits as well as dynamical limits. Limits are in meters for prismatic joints, are
omitted for continuous and fixed joints, and are in radians for revolute joints.

1 <joint name="name" type="revolute">

2 <parent link="link_a"/>

3 <child link="link_b"/>

4

5 <origin xyz="0 0 0" rpy="0 0 0"/>

6 <axis xyz="1 0 0"/>

7

8 </joint>

Listing 5.3: joint example

As an example, this is how a robot in an URDF XML format, formed by 2
links connected by a joint looks like Code 5.4.

1 <?xml version="1.0"?>

2 <robot name="simple_robot">

3 <link name="link_A">

4 </link>

5 <link name="link_B">

6 </link>

7

8 <joint name="link_A_to_link_B" type="fixed">

9 <parent link="link_A"/>

10 <child link="link_B"/>

11 <origin xyz="1 -0.124 0.42"/>

12 </joint >

13

14 </robot >

Listing 5.4: robot example
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5.3.2 ODE parameter extraction

An extraction of the parameters for a rigid body chain from a URDF file is
done as explained by Alg. 3 where the following operations were used:

1. getChain(RobotInfo,Root, EndEffector) - returns a chain of links and
joins that exist between 2 joints.

2. StartFromFirstNonFixedJoint(chain) - clear all the links and joints
s.t. the chain to start with a non fixed joint.

3. Joints(RobotInfo) - returns a list of joints.

4. type(joint) - returns the type of a joint ( e.g. revolute, fixed, etc )

5. Frame(origin rpy(joint), origin xyz(joint)) - return a 4X4 homogeneous
transformation for an roll pitch yaw Euler orientation and x, y, z displace-
ment.

6. se TO SE(Twist(joint) - return the exponential map of se(3) as a 4X4
homogeneous transformation.

7. AXB Build((frame · transform)−1) - build the Adjoint transformation
matrix as a 6X6 matrix.

8. No fixed joint(Current iXp(i)) - checks whether the expression contains
any symbols. In case no symbols are found, the joint has no degree of
freedom.

9. iSi ← iSi + [Twist(joint)] - append a new twist object to list iSi

10. Links(RobotInfo) - returns a list of links.

11. Inertia Build From(link) - it builds a 6X6 spatial inertia matrix.

12. Is eye(Prev ixp(i) path) - it checks for identity matrix.

This process can be easily adapted for a URDF tree structure. The result
of applying this algorithm is the following 4 lists:

1. iXp(i): a list of transformations between 2 consecutive screws (e.g. from
the parent of screw i to screw i)

2. iSi: a list of screws where each screw is expressed in the local frame of
reference (e.g. screw i in frame i)

3. iIi: a list of the spatial inertia of bodies expressed in local frame (e.g.
spatial inertia of body i in frame i)

4. iX0: a list of the transformations from the global to local frame of each
screw

Once these transformations are computed, they are used as input for Inverse
Dynamics as well as Forward Dynamics.
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Algorithm 3 Model Parameter extraction from URDF file

Require: Root, EndEffector, q, RobotInfo
Ensure: iXp(i)

, iSi,
iIi,

iX0

1: iXp(i)
← [], iSi ← [], iIi ← [], iX0 ← [I6]

2: chain← getChain(RobotInfo,Root, EndEffector)
3: chain← StartFromFirstNonFixedJoint(chain)
4: Current iXp(i)

← I6
5: Prev iXp(i)

path← I6
6: qindex ← −1
7: while element ∈ chain do
8: if element ∈ Joints(RobotInfo) then
9: joint← Joints(RobotInfo)[element]

10: if type(joint) is ’fixed’ then
11: qcurrent ← 0
12: else
13: qindex ← qindex + 1
14: qcurrent ← q[qindex]
15: end if
16: frame← Frame(origin rpy(joint), origin xyz(joint))
17: transform← se TO SE(Twist(joint), qcurrent)
18: Current iXp(i) ← AXB Build((frame · transform)−1)
19: if No fixed joint(Current iXp(i)) then
20: iSi ← iSi + [Twist(joint)]
21: iXp(i) ← iXp(i) + [Current iXp(i) · Prev ixp(i) path]
22: iX0 ← iX0 + [Current iXp(i) · Prev ixp(i) path · iX0[last]]
23: Prev ixp(i) path← I6
24: else
25: Prev ixp(i) path← Current iXp(i) · Prev ixp(i) path
26: end if
27: end if
28: if element ∈ Links(RobotInfo) then
29: link ← Links(RobotInfo)[element]
30: Current Link Inertia← Inertia Build From(link)
31: frame← Frame(Extract origin From inertial(link))
32: CoMXA ← AXB Build(frame−1)
33: CoMXA ← CoMXA · Prev ixp(i) path
34: AX∗

CoM = (CoMXA)
T

35: Current Link Inertia← AX∗
CoM · Current Link Inertia · CoMXA

36: if Is eye(Prev ixp(i) path) then
37: iIi ← iIi + [Current Link Inertia]
38: else
39: iIi[last]← iIi[last] + Current Link Inertia
40: end if
41: end if
42: end while
43: iX0 ← iX0[1 : last]
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5.4 Model Predictive Control

The model predictive control accepts generic ODEs (e.g. different robots) as well
as generic objective functions. For this, a custom implementation of multiple
shooting was used.

5.4.1 MPC flow

The overall flow of the MPC can be summarized by the following algorithm
Alg. 4. The process can be interpreted as follows: Given a robot in an initial
state, the objective function, the ground truth parameters, and the initial guess
of the robot parameters, the algorithm tries to find, at each iteration, the next
control action, that puts the robot closer to the objective by computing an
optimal control problem. A second process, that re-estimates the parameters
based on the new measurements, is taken place in parallel. These 2 complement
each other. At the same time, changes in the model are simulated by adding
noise.

At each iteration, readings for q, q̇, q̈ are used. Given the nature of the
implementation, the sensors are simulated as well. The measurements for (q, q̇)
can be directly taken from the robot simulation. On the other hand, acceleration
and spatial force require more attention. The sensor that returns q̈ is simulated
using the Forward Dynamics algorithm applied in the context of the robot (using
the ground truth parameters that characterize the ODE of the robot and the
current state of the robot). The spatial force is simulated using the Recursive
Newton-Euler Algorithm applied in the context of the robot. Nowadays, one
can find inertial sensors with different properties. During this thesis, we have
considered idealized sensors (no error in measurements) which is far from what
we get in a real-case scenario. For a better perspective of the current state-of-
the-art, work in force/torque sensors, one can check the following article [9].

During testing, no error in sensor measurements was taken into considera-
tion.

In addition, by adding extra constraints, at the optimal control level, one
can overcome the limitation of the URDF format (being defined only for open-
loop robots). This way, the current implementation can be used for closed-loop
robots as well.

5.4.2 Optimal Control

Every time when ExtractNextControlAction(...) doesn’t return an object an
optimal control sub-task starts. The formulation of the OCP , using multiple
shooting, looks as follows:
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Algorithm 4 System Identification during Nonlinear Model Predictive Control

Require: CurrentState, Cfg,GroundTruthParam,CurrentPredictedParam
Ensure: None
1:

2: while (True) do
3:

4: if TimeExpiredForCurrentParameters then
5: UPDATE(GroundTruthParam) ▷ Add random noise
6: Intg ← FwdDynamicsIntegrator(GroundTruthParam)
7: RESET (TimeExpiredForCurrentParameters)
8: end if
9:

10: q ← UPDATE(CurrentState) ▷ ”Sensor” reading
11: q̇ ← UPDATE(CurrentState) ▷ ”Sensor” reading
12:

13: while True do
14: τ ← ExtractNextControlAction(OCP ) ▷ Next control action
15: if τ then
16: break
17: else
18: Cfg[S0]← (q, q̇) ▷ Update the Configuration with new state
19: OCP ← UPDATE(Cfg,CurrentPredictedParam)
20: ▷ Compute Optimal Control Problem
21: end if
22: end while
23:

24: q̈ ← FwdDynamics(q, q̇, τ, GroundTruthParam) ▷ ”Sensor” reading
25:

26: F ← RNEA(q, q̇, q̈, GroundTruthParam, fext = 0) ▷ ”Sensor” reading
27:

28: CurrentPredictedParam← LLS SysIden NoSensorError(q, q̇, q̈,F , CurrentPredictedParam)
29:

30: CurrentState← Intg(Current State, τ, dt) ▷ Update the ”real” robot
31: end while
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min
x(·),u(·)

Φ(x(tf )) (5.1)

s.t. ẋ(t) = f(x(t), u(t), p),

x(t0) = x0

xlo ≤ x(t) ≤ xup,

ulo ≤ u(t) ≤ uup ∀t ∈ [t0, tf ]

To solve Eq. 5.1 numerically, we are using a discretized version by introducing
the following multiple shooting variables: s0, · · · , sN ; q0, · · · , qN for Eq. 5.2.

min
x(·),u(·)

Φ(SN ) (5.2)

s.t. si+1 = x(ti+1; ti, si, qi, p) i = 0, ..., N − 1

s0 = x0

xlo ≤ si ≤ xup, i = 0, ..., N

ulo ≤ qi ≤ uup i = 0, ..., N

where x(t; t0, s, q, p) is the solution of initial value problem Eq. 5.3.{
ẋ(t) = f(x(t), q, p)

x(t0) = s
(5.3)

Next, we define the primal variables as w = (s, q) and we introduce the
following functions for equality and inequality constraints:

a(w) =


x0 − s0

x(t1; t0, s0, q0, p)− s1
...

x(tN ; tN−1, sN−1, qN−1, p)− sN

 (5.4)

b(w) =


xlo − s
s− xup

qlo − q
q − qup

 (5.5)

Based on Eq. 5.4 and Eq. 5.5 one can write the OCP in a more compact
form:

min
w

Φ(w)

s.t. a(w) = 0

b(w) ≤ 0

The end formulation is then used as input for a nonlinear optimizer.
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5.4.3 Configuration

1 # timestep

2 dt = 1/100

3 # gravitational acceleration

4 g = [0, 0, -9.8]

5

6 Cfg = {

7

8 # initial guess for the final time

9 ’tf’: dt,

10 # lower bound for the final time

11 ’tf_lb’: dt,

12 # upper bound for the final time

13 ’tf_ub’: 3*dt,

14 #Number of shooting nodes , between 2 and 10

15 ’NumberShootingNodes ’: 2,

16 # initial state

17 ’S0’: vertcat(q, q_dot),

18 # a mask that characterizes which components of q and q_dot are

taken into consideration for the initial state

19 ’S0_mask ’: DM.ones(vertcat(q, q_dot).numel ()).elements (),

20 ’SnName ’: ["Sn_"+str(idx) for idx in range(vertcat(q, q_dot).

numel())],

21 # the final state

22 ’Xf’: vertcat(q, q_dot),

23 # a mask that characterizes which components of q and q_dot are

taken into consideration for the final state

24 ’Xf_mask ’: vertcat(DM.ones(q.numel ()), DM.ones(q_dot.numel())),

25 # initial guess for control parameters

26 ’w’: tau.elements (),

27 ’wName’: ["tau_"+str(idx) for idx in range(tau.numel ())],

28 # lower bound of the control parameters

29 ’lbw’: [-100 for idx in range(tau.numel())],

30 # upper bound of the control parameters

31 ’ubw’: [100 for idx in range(tau.numel ())],

32 # extra trajectory constraints w.r.t. "q"

33 ’q’: [],

34 ’qName’: [],

35 ’lbq’: [],

36 ’ubq’: [],

37 # number of iterations done by the nonlinear optimizer

38 ’max_iter ’: 10

39 }

Listing 5.5: Configuration
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CHAPTER 6

Tests

6.1 ODE comparation

The proposed solutions are tested relative to the current state-of-the-art similar
implementation: u2c [24], RBDL [18], and Bullet [12]. These libraries have
different goals, hence, not all the functionalities can be found available. The
tests are done using Python bindings offered by each of them.

The most important difference is given by the symbolic front-end of CasADi
[1] which introduces some extra overhead. On the other hand, it also provides
free sensitivity analysis, making it more suitable for optimization. This compu-
tation can only be archived by using the finite difference method for Bullet and
RBDL.

6.1.1 Dynamics functionalities

Of the 3 compared libraries, u2c is the closest one being also implemented
with CasADi. The main difference between the two of them is given by the
implementation of inverse dynamics functionality which is more suitable for
system identification as it has input the spatial inertia as a symbolic parameter.
The current proposed solution uses the ID as the main bone of the library. This
makes it slower given that the computation of inertia requires more time. This
decision is expected to impact the performance of the forward dynamics as we
will see.

Of the chosen libraries, Bullet is the only one based on a redundant ap-
proach, hence, no forward dynamics is offered.

RBDL is also a well-established robotics library that also makes use of
Featherstone algebra implementation.
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An overview of the functionalities offered by the 4 implementations can be
seen in table 6.1

Functionality u2c RBDL Bullet mine

I.D. Yes Yes Yes Yes
F.D.(ABA) Yes Yes No No
F.D.(CRBA) Yes Yes Yes Yes

M Yes Yes Yes Yes

C̃ Yes Yes Yes Yes
URDF Yes Yes No Yes

Sensitivity Yes No No Yes
Closed loop No Yes Yes No
Open loop Yes Yes Yes Yes
Constrains No Yes Yes No

Table 6.1: Library functionality provided

6.1.2 Time computation differences

Since in this thesis, we are doing parametric estimation as well as optimal con-
trol, the time evaluation of the dynamics expressed in CasADi has a big impact
on the end results.

For this, 2 types of tests are done. First, we check the time performance
between the libraries for 3 robots: double pendulum (2 DOF), Franka Emika
Panda (7 DOF), and open chain (14 DOF). A second test is done to observe
the implication of increasing the number of degrees of freedom.

The tests are done under Linux, using a 2.4GHz Intel I7 CPU in Python 3.10.
No C++ code generation was used forCasADi. Also, no vectorization was used
as part of the dynamics evaluation. To avoid possible external influences on the
results, all the experiments were done 100 times each.

Impact of Number of Input Variables

From Fig. 6.1, Fig. 6.2, and Fig. 6.3 it can be observed that the proposed im-
plementation is slower. This is to be expected due to the symbolical expression
used in maintaining the dynamics. The difference relative to u2c is due to the
algorithm used. (ABA in u2c vs. CRBA for the proposed implementation). It
can also be observed that the computation of C̃ = C +G (Coriolis and Gravity
forces) is lower than the computation of inverse dynamics. This is happening
because, even though, the computation of C̃ is done using the same Recursive
Newton-Euler Algorithm, the evaluation of this algorithm for C̃ has fewer input
symbolical parameters, thus, the computation graph is smaller.
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Figure 6.1: Franka Emika Panda

Figure 6.2: Double pendulum

Figure 6.3: Chain
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Figure 6.4: C̃ evaluation

Figure 6.5: ID evaluation
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Figure 6.6: Inertia evaluation

Impact of Number of degrees of freedom

The main observation from Fig. 6.4, Fig. 6.5 and Fig. 6.6 is that the overhead
introduced by using CasADi doesn’t seem to increase as a function of robot’s
complexity. Even though direct numerical implementations are faster, the in-
crease in performance it’s not significant if one is willing to factor in the time
required by the sensitivity computation.
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6.2 Derivatives - sensitivity analysis time com-
putation

From 6.7, one can observe that the complexity of the robot doesn’t change with
the increase of the robot’s complexity (degrees of freedom), nor with the increase
of the number of symbolical parameters of the function. For this test, the full
jacobian was computed.

(a) FD vs. total derivative (b) ID vs. total derivative

Figure 6.7: Derivative computation vs. Function computation
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6.3 System identification

As we can observe from 6.8, the inverse dynamics, linear least square tends to
have a linear increase in computation whereas the multiple shooting, nonlinear
last square has an exponential increase.

(a) Linear least squares (b) Nonlinear Least Squares

Figure 6.8: System identification

6.4 Videos

For a more direct interpretation of the final results, a visual inspection of some
simulations as well as for model predictive control, while continuous parametric
estimation is applied, can be accessed here 1. As part of this list, the Franka
Emika Panda robot was used.

1https://www.youtube.com/playlist?list=PLrLtvnPdx3nES55ZrEqJPL42UNDTrMlkL
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CHAPTER 7

Conclusions and future work

The first thing one gets to observe is the engineering complexity, a project
involving adapting control, requires. Without proper tools for automatic dif-
ferentiation, that provide a focus on mathematical modeling, the entire process
would have been significantly longer as well as heavily error-prone.

Another thing one gets to observe is the different types of challenges different
sub-problems have.

The process of building the ODE requires more attention on the mathemat-
ical modeling side as well as building the necessary parameters from standard
URDF robot format, the process is deterministic in nature.

On the other hand, the system identification process, besides requiring the
proof of the equivalence of the Recursive Newton-Euler Algorithm for a generic
implementation, also involves intermediate data analysis and physical interpre-
tation of the results. This is necessary to establish the limits of the current
approach, when it comes to what is not identifiable, as well as to motivate why
this approach is trajectory independent and thus, does not require an optimal
design method as well.

Last but not least, the model predictive control is very sensitive w.r.t. differ-
ent parameters, like for example the frequency of data equation or the number of
shooting nodes, etc. These problems were not addressed in this thesis (though,
the current implementation, was influenced by them). A rigorous approach
to this matter will involve a more extensive analysis using specific tools from
non-linear dynamics, like for example Lyapunov analysis, [42] as well as other
concepts from adaptive control [2].
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It goes without saying, the proposed multi-body framework, by comparison
with the current state-of-the-art implementation, is not faster. Nor it tries to be.
The main goal of this thesis was to provide a proof of concept for parametric
estimation problems in the context of multi-body dynamics, thus, the list of
possible improvements is big, among others we mention:

• Adding constraints for self-collision avoidance ([27])

• Implementing optimal control/MPC on top of Inverse Dymaics [25]

• Implementation of high level API for CasADi’s Conic solver, required for
physically plausible system identification [44] [45])

• Applying the Multiple shooting, non-linear least squares after Linear least
squares

• Moving away from URDF robot topology limitation

• Adding friction

• Integrate motion planning [28] [29]

• Test using a real robot
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nichtlineare prädiktive regelung großer systeme teil i: Methodenbeschrei-
bung). 2002.

[16] Tom Erez and Emanuel Todorov. Trajectory optimization for domains
with contacts using inverse dynamics. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4914–4919. IEEE,
2012.

[17] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.

[18] Martin L Felis. Rbdl: an efficient rigid-body dynamics library using recur-
sive algorithms. Autonomous Robots, 41(2):495–511, 2017.

[19] M Gautier and W Khalil. Exciting trajectories for robot inertial parameters
identification. IFAC Proceedings Volumes, 25(15):585–590, 1992.

[20] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles
and techniques of algorithmic differentiation. SIAM, 2008.

[21] https://abedgnu.github.io. Unified robot description format urdf. https:
//abedgnu.github.io/Notes-ROS/_images/link.png, 2022. [Online; ac-
cessed September, 2022].

[22] https://abedgnu.github.io. Unified robot description format urdf. https:
//abedgnu.github.io/Notes-ROS/_images/joint.png, 2022. [Online;
accessed September, 2022].

87

https://github.com/nashmit/thesis-scientific-computing
https://github.com/nashmit/thesis-scientific-computing
https://abedgnu.github.io/Notes-ROS/_images/link.png
https://abedgnu.github.io/Notes-ROS/_images/link.png
https://abedgnu.github.io/Notes-ROS/_images/joint.png
https://abedgnu.github.io/Notes-ROS/_images/joint.png


[23] https://www.engineersedge.com. Truck and car universal joint design
and engineering equation. https://www.engineersedge.com/power_

transmission/images/universal-joint.jpg, 2022. [Online; accessed
September, 2022].

[24] Lill Maria Gjerde Johannessen, Mathias Hauan Arbo, and Jan Tommy
Gravdahl. Robot dynamics with urdf & casadi. In 2019 7th International
Conference on Control, Mechatronics and Automation (ICCMA), pages 1–
6. IEEE, 2019.

[25] Sotaro Katayama and Toshiyuki Ohtsuka. Efficient solution method based
on inverse dynamics for optimal control problems of rigid body systems. In
2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 2070–2076. IEEE, 2021.

[26] Junggon Kim. Lie group formulation of articulated rigid body dynamics.
Technical report, Technical report, Carnegie Mellon University, 2012.

[27] K Knese. Realizing online (self-) collision avoidance based on inequality
constraints with hierarchical inverse kinematics. Master’s thesis, Technical
University of Munich (July 2014), 2014.

[28] Steven M La Valle. Motion planning. IEEE Robotics & Automation Mag-
azine, 18(2):108–118, 2011.

[29] Jean-Claude Latombe. Robot motion planning, volume 124. Springer Sci-
ence & Business Media, 2012.

[30] D.B. Leineweber. The theory of MUSCOD in a nutshell. Technical Report
96-19, 1996.

[31] Kevin M Lynch and Frank C Park. Modern robotics. Cambridge University
Press, 2017.

[32] Charles C Margossian. A review of automatic differentiation and its ef-
ficient implementation. Wiley interdisciplinary reviews: data mining and
knowledge discovery, 9(4):e1305, 2019.

[33] Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal
Hammoud, Maximilien Naveau, Justin Carpentier, Ludovic Righetti, Sethu
Vijayakumar, and Nicolas Mansard. Crocoddyl: An efficient and versatile
framework for multi-contact optimal control. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 2536–2542. IEEE,
2020.

[34] Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical
introduction to robotic manipulation. CRC press, 2017.

[35] Frank C Park, James E Bobrow, and Scott R Ploen. A lie group formu-
lation of robot dynamics. The International journal of robotics research,
14(6):609–618, 1995.

88

https://www.engineersedge.com/power_transmission/images/universal-joint.jpg
https://www.engineersedge.com/power_transmission/images/universal-joint.jpg


[36] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in pytorch. 2017.

[37] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for tra-
jectory optimization of rigid bodies through contact. The International
Journal of Robotics Research, 33(1):69–81, 2014.

[38] Guillermo Rodriguez, Abhinandan Jain, and K Kreutz-Delgado. Spatial
operator algebra for multibody system dynamics. Journal of the Astronau-
tical Sciences, 40(1):27–50, 1992.

[39] Michael A Sherman, Ajay Seth, and Scott L Delp. Simbody: multibody
dynamics for biomedical research. Procedia Iutam, 2:241–261, 2011.

[40] Shubham Singh, Ryan P Russell, and Patrick M Wensing. Analytical
second-order partial derivatives of rigid-body inverse dynamics. In 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 11781–11788. IEEE, 2022.

[41] Shubham Singh, Ryan P Russell, and Patrick M Wensing. Efficient analyt-
ical derivatives of rigid-body dynamics using spatial vector algebra. IEEE
Robotics and Automation Letters, 7(2):1776–1783, 2022.

[42] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume
199. Prentice hall Englewood Cliffs, NJ, 1991.

[43] Russ Tedrake. Underactuated robotics, 2022. URL http://underactuated.
mit. edu.

[44] Silvio Traversaro, Stanislas Brossette, Adrien Escande, and Francesco Nori.
Identification of fully physical consistent inertial parameters using opti-
mization on manifolds. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5446–5451. IEEE, 2016.

[45] Patrick M Wensing, Sangbae Kim, and Jean-Jacques E Slotine. Linear
matrix inequalities for physically consistent inertial parameter identifica-
tion: A statistical perspective on the mass distribution. IEEE Robotics and
Automation Letters, 3(1):60–67, 2017.

[46] Andrew Witkin and Michael Kass. Spacetime constraints. ACM Siggraph
Computer Graphics, 22(4):159–168, 1988.

89



Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine an-
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